ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-layer MoS2 mechanical resonators

104   0   0.0 ( 0 )
 نشر من قبل Andres Castellanos-Gomez
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we demonstrate the fabrication of single-layer MoS2 mechanical resonators. The fabricated resonators have fundamental resonance frequencies in the order of 10 MHz to 30 MHz (depending on their geometry) and their quality factor is about ~55 at room temperature in vacuum. The dynamical properties clearly indicate that monolayer MoS2 membranes are in the membrane limit (i.e., tension dominated), in contrast to their thicker counterparts, which behave as plates. We also demonstrate clear signatures of nonlinear behaviour of our atomically thin membranes, thus providing a starting point for future investigations on the nonlinear dynamics of monolayer nanomechanical resonators.

قيم البحث

اقرأ أيضاً

We detect electroluminescence in single layer molybdenum disulphide (MoS2) field-effect transistors built on transparent glass substrates. By comparing absorption, photoluminescence, and electroluminescence of the same MoS2 layer, we find that they a ll involve the same excited state at 1.8eV. The electroluminescence has pronounced threshold behavior and is localized at the contacts. The results show that single layer MoS2, a direct band gap semiconductor, is promising for novel optoelectronic devices, such as 2-dimensional light detectors and emitters.
Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be heterto-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize array of MoS2-graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ~100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and opens opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.
The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-laye r MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substrate and have an area comprised between 10 {mu}m2 and 60 {mu}m2. Differential reflectance measurements performed on these crystallites show that the area of the MoS2 crystallites has an influence on the position and broadening of the B exciton while the orientation does not influence the A and B excitons of MoS2. These measurements demonstrate that differential reflectance measurements have the potential to be used to characterize the homogeneity of large area CVD grown samples.
By creating defects via oxygen plasma treatment, we demonstrate optical properties variation of single-layer MoS2. We found that, with increasing plasma exposure time, the photoluminescence (PL) evolves from very high intensity to complete quenching, accompanied by gradual reduction and broadening of MoS2 Raman modes, indicative of distortion of the MoS2 lattice after oxygen bombardment. X-ray photoelectron spectroscopy study shows the appearance of Mo6+ peak, suggesting the creation of MoO3 disordered regions in the MoS2 flake. Finally, using band structure calculations, we demonstrate that the creation of MoO3 disordered domains upon exposure to oxygen plasma leads to a direct to indirect bandgap transition in single-layer MoS2, which explains the observed PL quenching.
We study field effect transistor characteristics in etched single layer MoS2 nanoribbon devices of width 50nm with ohmic contacts. We employ a SF6 dry plasma process to etch MoS2 nanoribbons using low etching (RF) power allowing very good control ove r etching rate. Transconductance measurements reveal a steep sub-threshold slope of 3.5V/dec using a global backgate. Moreover, we measure a high current density of 38 uA/um resulting in high on/off ratio of the order of 10^5. We observe mobility reaching as high as 50 cm^2/V.s with increasing source-drain bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا