ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomous RPCs for a Cosmic Ray ground array

155   0   0.0 ( 0 )
 نشر من قبل Ruben Concei\\c{c}\\~ao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the behaviour of Resistive Plate Chambers (RPC) developed for muon detection in ultra-high energy cosmic ray (UHECR) experiments. The RPCs were developed for the MARTA project and were tested on field conditions. These RPCs cover an area of $1.5 times 1.2,{m^2}$ and are instrumented with 64 pickup electrodes providing a segmentation better than $20,$cm. By shielding the detector units with enough slant mass to absorb the electromagnetic component in the air showers, a clean measurement of the muon content is allowed, a concept to be implemented in a next generation of UHECR experiments. The operation of a ground array detector poses challenging demands, as the RPC must operate remotely under extreme environmental conditions, with limited budgets for power and minimal maintenance. The RPC, DAQ, High Voltage and monitoring systems are enclosed in an aluminium-sealed case, providing a compact and robust unit suited for outdoor environments, which can be easily deployed and connected. The RPCs developed at LIP-Coimbra are able to operate using a very low gas flux, which allows running them for few years with a small gas reservoir. Several prototypes have already been built and tested both in the laboratory and outdoors. We report on the most recent tests done in the field that show that the developed RPCs have operated in a stable way for more than 2 years in field conditions.



قيم البحث

اقرأ أيضاً

122 - S. Quinn , T. Aramaki , R. Bird 2018
The General AntiParticle Spectrometer (GAPS) is a balloon-borne instrument designed to detect cosmic-ray antimatter using the novel exotic atom technique, obviating the strong magnetic fields required by experiments like AMS, PAMELA, or BESS. It will be sensitive to primary antideuterons with kinetic energies of $approx0.05-0.2$ GeV/nucleon, providing some overlap with the previously mentioned experiments at the highest energies. For $3times35$ day balloon flights, and standard classes of primary antideuteron propagation models, GAPS will be sensitive to $m_{mathrm{DM}}approx10-100$ GeV c$^{-2}$ WIMPs with a dark-matter flux to astrophysical flux ratio approaching 100. This clean primary channel is a key feature of GAPS and is crucial for a rare event search. Additionally, the antiproton spectrum will be extended with high statistics measurements to cover the $0.07 leq E leq 0.25 $ GeV domain. For $E>0.2$ GeV GAPS data will be complementary to existing experiments, while $E<0.2$ GeV explores a new regime. The first flight is scheduled for late 2020 in Antarctica. These proceedings will describe the astrophysical processes and backgrounds relevant to the dark matter search, a brief discussion of detector operation, and construction progress made to date.
As the amount of information to be transmitted from deep-space rapidly increases, the radiofrequency technology has become a bottleneck in space communications. RF is already limiting the scientific outcome of deep-space missions and could be a signi ficant obstacle in the developing of manned missions. Lasercom holds the promise to solve this problem, as it will considerably increase the data rate while decreasing the energy, mass and volume of onboard communication systems. In RF deep-space communications, where the received power is the main limitation, the traditional approach to boost the data throughput has been increasing the receivers aperture, e.g. the 70-m antennas in the NASAs Deep Space Network. Optical communications also can benefit from this strategy, thus 10-m class telescopes have typically been suggested to support future deep-space links. However, the cost of big telescopes increase exponentially with their aperture, and new ideas are needed to optimize this ratio. Here, the use of ground-based gamma-ray telescopes, known as Cherenkov telescopes, is suggested. These are optical telescopes designed to maximize the receivers aperture at a minimum cost with some relaxed requirements. As they are used in an array configuration and multiple identical units need to be built, each element of the telescope is designed to minimize its cost. Furthermore, the native array configuration would facilitate the joint operation of Cherenkov and lasercom telescopes. These telescopes offer very big apertures, ranging from several meters to almost 30 meters, which could greatly improve the performance of optical ground stations. The key elements of these telescopes have been studied applied to lasercom, reaching the conclusion that it could be an interesting strategy to include them in the future development of an optical deep-space network.
The Gamma-Ray Integrated Detectors (GRID) are a space project to monitor the transient gamma-ray sky in the multi-messenger astronomy era using multiple detectors on-board CubeSats. The second GRID detector, GRID-02, was launched in 2020. The perform ance of the detector, including the energy response, effective area, angular response, and temperature-bias dependence, is calibrated in the laboratory and presented here. These measurements are compared with particle tracing simulations and validate the Geant4 model that will be used for generating detector responses.
150 - G. Puhlhofer 2013
FlashCam is a Cherenkov camera development project centered around a fully digital trigger and readout scheme with smart, digital signal processing, and a horizontal architecture for the electromechanical implementation. The fully digital approach, b ased on commercial FADCs and FPGAs as key components, provides the option to easily implement different types of triggers as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. At the same time, a large dynamic range and high resolution of low-amplitude signals in a single readout channel per pixel is achieved using compression of high amplitude signals in the preamplifier and signal processing in the FPGA. The readout of the front-end modules into a camera server is Ethernet-based using standard Ethernet switches. In its current implementation, data transfer and backend processing rates of ~3.8 GBytes/sec have been achieved. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several tens of kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, which is interfaced through analogue signal transmission to the digital readout system. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. This paper describes the FlashCam concept, its verification process, and its implementation for a 12 m class CTA telescope with PMT-based PDP.
We are developing a kilo-pixels Ti/Au TES array as a backup option for Athena X-IFU. Here we report on single-pixel performance of a 32$times$32 array operated in a Frequency Division Multiplexing (FDM) readout system, with bias frequencies in the ra nge 1-5 MHz. We have tested the pixels response at several photon energies, by means of a $^{55}$Fe radioactive source (emitting Mn-K$alpha$ at 5.9 keV) and a Modulated X-ray Source (MXS, providing Cr-K$alpha$ at 5.4 keV and Cu-K$alpha$ at 8.0 keV). First, we report the procedure used to perform the detector energy scale calibration, usually achieving a calibration accuracy better than $sim$ 0.5 eV in the 5.4 - 8.9 keV energy range. Then, we present the measured energy resolution at the different energies (best single pixel performance: $Delta$E$_{FWHM}$ = 2.40 $pm$ 0.09 eV @ 5.4 keV; 2.53 $pm$ 0.10 eV @ 5.9 keV; 2.78 $pm$ 0.16 eV @ 8.0 keV), investigating also the performance dependency from the pixel bias frequency and the count rate. Thanks to long background measurements ($sim$ 1 day), we finally detected also the Al-K$alpha$ line at 1.5 keV, generated by fluorescence inside the experimental setup. We analyzed this line to obtain a first assessment of the single-pixel performance also at low energy ($Delta$E$_{FWHM}$ = 1.91 eV $pm$ 0.21 eV @ 1.5 keV), and to evaluate the linearity of the detector response in a large energy band (1.5 - 8.9 keV).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا