ﻻ يوجد ملخص باللغة العربية
The General AntiParticle Spectrometer (GAPS) is a balloon-borne instrument designed to detect cosmic-ray antimatter using the novel exotic atom technique, obviating the strong magnetic fields required by experiments like AMS, PAMELA, or BESS. It will be sensitive to primary antideuterons with kinetic energies of $approx0.05-0.2$ GeV/nucleon, providing some overlap with the previously mentioned experiments at the highest energies. For $3times35$ day balloon flights, and standard classes of primary antideuteron propagation models, GAPS will be sensitive to $m_{mathrm{DM}}approx10-100$ GeV c$^{-2}$ WIMPs with a dark-matter flux to astrophysical flux ratio approaching 100. This clean primary channel is a key feature of GAPS and is crucial for a rare event search. Additionally, the antiproton spectrum will be extended with high statistics measurements to cover the $0.07 leq E leq 0.25 $ GeV domain. For $E>0.2$ GeV GAPS data will be complementary to existing experiments, while $E<0.2$ GeV explores a new regime. The first flight is scheduled for late 2020 in Antarctica. These proceedings will describe the astrophysical processes and backgrounds relevant to the dark matter search, a brief discussion of detector operation, and construction progress made to date.
The General Antiparticle Spectrometer (GAPS) will carry out a sensitive dark matter search by measuring low-energy ($mathrm{E} < 0.25 mathrm{GeV/nucleon}$) cosmic ray antinuclei. The primary targets are low-energy antideuterons produced in the annihi
The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS experiment (pGAPS) was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS e
DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold
The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long durat
The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates