ترغب بنشر مسار تعليمي؟ اضغط هنا

Large scale evaluation of differences between network-based and pairwise sequence-alignment-based methods of dendrogram reconstruction

78   0   0.0 ( 0 )
 نشر من قبل Daniel Gamermann Dr.
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dendrograms are a way to represent evolutionary relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The genetic material of choice for the sequence alignments (all the genes or sets of genes) results in distinct inferred dendrograms. In this work, we evaluate differences between dendrograms reconstructed with different methodologies and obtained for different sets of organisms chosen at random from a much larger set. A statistical analysis is performed in order to estimate the fluctuation between the results obtained from the different methodologies. This analysis permit us to validate a systematic approach, based on the comparison of the organisms metabolic networks for inferring dendrograms. It has the advantage that it allows the comparison of organisms very far away in the evolutionary tree even if they have no known ortholog gene in common.



قيم البحث

اقرأ أيضاً

Motivation: Measurements of gene expression over time enable the reconstruction of transcriptional networks. However, Bayesian networks and many other current reconstruction methods rely on assumptions that conflict with the differential equations th at describe transcriptional kinetics. Practical approximations of kinetic models would enable inferring causal relationships between genes from expression data of microarray, tag-based and conventional platforms, but conclusions are sensitive to the assumptions made. Results: The representation of a sufficiently large portion of genome enables computation of an upper bound on how much confidence one may place in influences between genes on the basis of expression data. Information about which genes encode transcription factors is not necessary but may be incorporated if available. The methodology is generalized to cover cases in which expression measurements are missing for many of the genes that might control the transcription of the genes of interest. The assumption that the gene expression level is roughly proportional to the rate of translation led to better empirical performance than did either the assumption that the gene expression level is roughly proportional to the protein level or the Bayesian model average of both assumptions. Availability: http://www.oisb.ca points to R code implementing the methods (R Development Core Team 2004). Supplementary information: http://www.davidbickel.com
In many applications it is important to know whether the amount of fluctuation in a series of observations changes over time. In this article, we investigate different tests for detecting change in the scale of mean-stationary time series. The classi cal approach based on the CUSUM test applied to the squared centered, is very vulnerable to outliers and impractical for heavy-tailed data, which leads us to contemplate test statistics based on alternative, less outlier-sensitive scale estimators. It turns out that the tests based on Ginis mean difference (the average of all pairwise distances) or generalized Qn estimators (sample quantiles of all pairwise distances) are very suitable candidates. They improve upon the classical test not only under heavy tails or in the presence of outliers, but also under normality. An explanation for this at first counterintuitive result is that the corresponding long-run variance estimates are less affected by a scale change than in the case of the sample-variance-based test. We use recent results on the process convergence of U-statistics and U-quantiles for dependent sequences to derive the limiting distribution of the test statistics and propose estimators for the long-run variance. We perform a simulations study to investigate the finite sample behavior of the test and their power. Furthermore, we demonstrate the applicability of the new change-point detection methods at two real-life data examples from hydrology and finance.
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties, and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes, and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78,649 regulatory interactions covering 42 bacteria in nine taxa, containing 3,708 regulons and 1,776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.
151 - Bank G. Fenyves 2021
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
90 - Giulia Fiscon 2020
The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity, comorbidity, or for their association to drugs tentatively repurposed to treat COVID-19. Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments, as well as a new combination therapy of 5 drugs, actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies, and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا