ﻻ يوجد ملخص باللغة العربية
In many applications it is important to know whether the amount of fluctuation in a series of observations changes over time. In this article, we investigate different tests for detecting change in the scale of mean-stationary time series. The classical approach based on the CUSUM test applied to the squared centered, is very vulnerable to outliers and impractical for heavy-tailed data, which leads us to contemplate test statistics based on alternative, less outlier-sensitive scale estimators. It turns out that the tests based on Ginis mean difference (the average of all pairwise distances) or generalized Qn estimators (sample quantiles of all pairwise distances) are very suitable candidates. They improve upon the classical test not only under heavy tails or in the presence of outliers, but also under normality. An explanation for this at first counterintuitive result is that the corresponding long-run variance estimates are less affected by a scale change than in the case of the sample-variance-based test. We use recent results on the process convergence of U-statistics and U-quantiles for dependent sequences to derive the limiting distribution of the test statistics and propose estimators for the long-run variance. We perform a simulations study to investigate the finite sample behavior of the test and their power. Furthermore, we demonstrate the applicability of the new change-point detection methods at two real-life data examples from hydrology and finance.
When both the difference between two quantities and their individual values can be measured or computational predicted, multiple quantities can be determined from the measurements or predictions of select individual quantities and select pairwise dif
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide condit
Dendrograms are a way to represent evolutionary relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The genetic material of cho
The analysis of record-breaking events is of interest in fields such as climatology, hydrology, economy or sports. In connection with the record occurrence, we propose three distribution-free statistics for the changepoint detection problem. They are
A new family of nonparametric statistics, the r-statistics, is introduced. It consists of counting the number of records of the cumulative sum of the sample. The single-sample r-statistic is almost as powerful as Students t-statistic for Gaussian and