ﻻ يوجد ملخص باللغة العربية
Deep learning has demonstrated tremendous break through in the area of image/video processing. In this paper, a spatial-temporal residue network (STResNet) based in-loop filter is proposed to suppress visual artifacts such as blocking, ringing in video coding. Specifically, the spatial and temporal information is jointly exploited by taking both current block and co-located block in reference frame into consideration during the processing of in-loop filter. The architecture of STResNet only consists of four convolution layers which shows hospitality to memory and coding complexity. Moreover, to fully adapt the input content and improve the performance of the proposed in-loop filter, coding tree unit (CTU) level control flag is applied in the sense of rate-distortion optimization. Extensive experimental results show that our scheme provides up to 5.1% bit-rate reduction compared to the state-of-the-art video coding standard.
Loop filters are used in video coding to remove artifacts or improve performance. Recent advances in deploying convolutional neural network (CNN) to replace traditional loop filters show large gains but with problems for practical application. First,
The past decade has witnessed great success of deep learning technology in many disciplines, especially in computer vision and image processing. However, deep learning-based video coding remains in its infancy. This paper reviews the representative w
In a typical video rate allocation problem, the objective is to optimally distribute a source rate budget among a set of (in)dependently coded data units to minimize the total distortion of all units. Conventional Lagrangian approaches convert the lo
Cross-component linear model (CCLM) prediction has been repeatedly proven to be effective in reducing the inter-channel redundancies in video compression. Essentially speaking, the linear model is identically trained by employing accessible luma and
3D video coding is one of the most popular research area in multimedia. This paper reviews the recent progress of the coding technologies for multiview video (MVV) and free view-point video (FVV) which is represented by MVV and depth maps. We first d