ترغب بنشر مسار تعليمي؟ اضغط هنا

The holographic dual of the Penrose transform

66   0   0.0 ( 0 )
 نشر من قبل Yasha Neiman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yasha Neiman




اسأل ChatGPT حول البحث

We consider the holographic duality between type-A higher-spin gravity in AdS_4 and the free U(N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these square root spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a square root of CPT.



قيم البحث

اقرأ أيضاً

We propose dual thermodynamics corresponding to black hole mechanics with the identifications E -> A/4, S -> M, and T -> 1/T in Planck units. Here A, M and T are the horizon area, mass and Hawking temperature of a black hole and E, S and T are the en ergy, entropy and temperature of a corresponding dual quantum system. We show that, for a Schwarzschild black hole, the dual variables formally satisfy all three laws of thermodynamics, including the Planck-Nernst form of the third law requiring that the entropy tend to zero at low temperature. This is in contrast with traditional black hole thermodynamics, where the entropy is singular. Once the third law is satisfied, it is straightforward to construct simple (dual) quantum systems representing black hole mechanics. As an example, we construct toy models from one dimensional (Fermi or Bose) quantum gases with N ~ M in a Planck scale box. In addition to recovering black hole mechanics, we obtain quantum corrections to the entropy, including the logarithmic correction obtained by previous papers. The energy-entropy duality transforms a strongly interacting gravitational system (black hole) into a weakly interacting quantum system (quantum gas) and thus provides a natural framework for the quantum statistics underlying the holographic conjecture.
In this paper, we will analyze the connection between the fidelity susceptibility, the holographic complexity and the thermodynamic volume. We will regularize the fidelity susceptibility and the holographic complexity by subtracting the contribution of the background AdS spacetime from the deformation of the AdS spacetime. It will be demonstrated that this regularized fidelity susceptibility has the same behavior as the thermodynamic volume and that the regularized complexity has a very different behavior. As the information dual to different volumes in the bulk would be measured by the fidelity susceptibility and the holographic complexity, this paper will establish a connection between thermodynamics and information dual to a volume.
We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does no t require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
71 - T.Banks 2003
The Cartan-Penrose (CP) equation is interpreted as a connection between a spinor at a point in spacetime, and a pair of holographic screens on which the information at that point may be projected. Local SUSY is thus given a physical interpretation in terms of the ambiguity of the choice of holographic screen implicit in the work of Bousso. The classical CP equation is conformally invariant, but quantization introduces metrical information via the B(ekenstein)-H(awking)-F(ischler)-S(usskind)-B(ousso) connection between area and entropy. A piece of the classical projective invariance survives as the $(-1)^F$ operation of Fermi statistics. I expand on a previously discussed formulation of quantum cosmology, using the connection between SUSY and screens.
We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and show that is possible to derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we locally construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the $SO(3)times SO(3)$ R-symmetry group of the gauge theory. We obtain the speed of sound for different values of the vacuum expectation value of a single trace operator when a double trace deformation is induced in the dual gauge theory. In this particular family of solutions, we find that the speed of sound exceeds the conformal value. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner-Freedman window.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا