ﻻ يوجد ملخص باللغة العربية
We consider the holographic duality between type-A higher-spin gravity in AdS_4 and the free U(N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these square root spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a square root of CPT.
We propose dual thermodynamics corresponding to black hole mechanics with the identifications E -> A/4, S -> M, and T -> 1/T in Planck units. Here A, M and T are the horizon area, mass and Hawking temperature of a black hole and E, S and T are the en
In this paper, we will analyze the connection between the fidelity susceptibility, the holographic complexity and the thermodynamic volume. We will regularize the fidelity susceptibility and the holographic complexity by subtracting the contribution
We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does no
The Cartan-Penrose (CP) equation is interpreted as a connection between a spinor at a point in spacetime, and a pair of holographic screens on which the information at that point may be projected. Local SUSY is thus given a physical interpretation in
We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and show that is possible to derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the