ﻻ يوجد ملخص باللغة العربية
In this paper, we will analyze the connection between the fidelity susceptibility, the holographic complexity and the thermodynamic volume. We will regularize the fidelity susceptibility and the holographic complexity by subtracting the contribution of the background AdS spacetime from the deformation of the AdS spacetime. It will be demonstrated that this regularized fidelity susceptibility has the same behavior as the thermodynamic volume and that the regularized complexity has a very different behavior. As the information dual to different volumes in the bulk would be measured by the fidelity susceptibility and the holographic complexity, this paper will establish a connection between thermodynamics and information dual to a volume.
We study the holographic complexity conjectures for rotating black holes, uncovering a relationship between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is the thermodynamic volume and not the entropy
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a
We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS$_2$ brane embedded in AdS$_3$. We find that, using the complexity=volume proposal, t
We propose dual thermodynamics corresponding to black hole mechanics with the identifications E -> A/4, S -> M, and T -> 1/T in Planck units. Here A, M and T are the horizon area, mass and Hawking temperature of a black hole and E, S and T are the en
We consider the holographic duality between type-A higher-spin gravity in AdS_4 and the free U(N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to thi