ترغب بنشر مسار تعليمي؟ اضغط هنا

Trapped modes with extremely high quality factor in the subwavelength ring resonator composed of dielectric nanorods

272   0   0.0 ( 0 )
 نشر من قبل Haibin Lv
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate numerically the trapped modes with near zero group velocities supported in the ring array composed of dielectric nanorods, based on a two-dimensional model. Two sorts of trapped modes in the ring array have been identified: the BCR trapped modes which correspond to the bound modes below the light line at the edge of the first Brillouin zone in the corresponding planar structure (namely the infinite linear chain); the quasi-BIC trapped modes corresponding to the bound states in the continuum supported in the infinite linear chain. According to the whispering gallery condition, the BCR trapped modes can be supported in the ring array only when the number of dielectric elements N is even, while the quasi-BIC ones always exist no matter whether N is odd or even. For both two kind of trapped modes, the lowest one of each kind possesses the highest Q factor, which are ~105 for BCR kind and ~1011 for quasi-BIC kind with N=16 respectively, and the radiation loss increases dramatically as the structural resonance increases. Finally, the behavior of the Q factor with N is explained numerically for the lowest one of each kind of trapped modes. The Q factor scales as Q~exp(0.662N) for the quasi-BIC trapped mode and Q~exp(0.325N) for the BCR one. Intriguingly, the Q factor of the quasi-BIC trapped mode can be as large as ~105 even at N=8. Compared to the finite linear chain, the structure of ring array exhibits overwhelming advantage in Q factor with the same N because there is no array-edge radiation loss in the ring array. We note that the principles can certainly be extended to particles of other shapes (such as nanospheres, nanodisks, and many other experimentally feasible geometries).

قيم البحث

اقرأ أيضاً

The realization and characterization of a high quality factor resonator composed of two hollow-dielectric cylinders with its pseudo-TM$_{030}$ mode resonating at 10.9 GHz frequency is discussed. The quality factor was measured at the temperatures 300 K and 4 K obtaining $mbox{Q}_{300mbox{K}}=(150,000pm 2,000)$ and $mbox{Q}_{4mbox{K}}=(720,000pm 10,000)$respectively, the latter corresponding to a gain of one order of magnitude with respect to a traditional copper cylindrical-cavity with the corresponding TM$_{010}$ mode resonating at the same frequency. The implications to dark-matter axion-searches with cavity experiments are discussed showing that the gain in quality factor is not spoiled by a reduced geometrical coupling $C_{030}$ of the cavity mode to the axion field. This reduction effect is estimated to be at most 20%. Numerical simulations show that frequency tuning of several hundreds MHz is feasible.
Plasmonic resonators have drawn more attention due to the ability to confine light into subwavelength scale. However, they always suffer from a low quality (Q) factor owing to the intrinsic loss of metal. Here, we numerically propose a plasmonic reso nator with ultra-high Q factor based on plasmonic metal-insulator-metal (MIM) waveguide structures. The resonator consists of a disk cavity surrounded by a concentric ring cavity, possessing an ultra-small volume. Arising from the plasmon hybridization between plasmon modes in the disk and ring cavity, the induced bonding hybridized modes have ultra-narrow full wave at half maximum (FWHM) as well as ultra-high Q factors. The FWHM can be nearly 1 nm and Q factor can be more than 400. Furthermore, such device can act as a refractive index sensor with ultra-high figure of merit (FOM). This work provides a novel approach to design plasmonic high-Q-factor resonators, and has potential on-chip applications such as filters, sensors and nanolasers.
In this paper, we propose a novel design of dielectric laser-driven accelerator (DLA) utilizing evanescent electric field of racetrack ring resonator structures. Driven by laser light with the correctly designed optical phase window, sustained accele ration of electrons with controlled deflection is shown. Based on this design, we calculate an acceleration from 30 keV to 148.312 keV in 104.655 {mu}m using a cascaded 11-stage racetrack ring resonators. This new idea poses a solution for on-chip integration of many DLA stages, while maintains high average accelerating gradients, providing a potential practical realization for accelerator on a chip.
We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum representation of the measured field distributions shows that all resonant modes are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model was developed. It shows excellent agreement with all but a single class of measured field distributions that will be treated separately.
Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper , we experimentally demonstrate the enhancement of the intensity of the magnetic field in a high-index dielectric cylinder at the proximity of the dipolar Mie resonances by more than two orders of magnitude for both the TE and TM polarizations of the incident wave. We present a complete theoretical explanation of the effect and show that the phenomenon is very general - it should be observed for any high-index particles. The results explain the huge enhancement of nonlinear effects observed recently in optics, suggesting a new landscape for all-dielectric nonlinear nanoscale photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا