ﻻ يوجد ملخص باللغة العربية
In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to find robust, or stable, solutions because of the uncertainty inherent in the big data origins of Q and limitations in computer numerical precision, particularly in a new class of quantum annealing computers. Experimental design techniques are used to generate a diverse subset of possible scenarios, from which robust solutions are identified. An illustrative example with practical application to business decision making is examined. The approach presented also generates a surface response equation which is used to estimate upper bounds in constant time for Q instantiations within the scenario extremes. In addition, a theoretical framework for the robustness of individual x_i variables is considered by examining the range of Q values over which the x_i are predetermined.
The Quadratic Unconstrained Binary Optimization (QUBO) modeling and solution framework is a requirement for quantum and digital annealers. However optimality for QUBO problems of any practical size is extremely difficult to achieve. In order to incor
The broad applicability of Quadratic Unconstrained Binary Optimization (QUBO) constitutes a general-purpose modeling framework for combinatorial optimization problems and are a required format for gate array and quantum annealing computers. QUBO anne
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables n
The Fujitsu Digital Annealer (DA) is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. It is implemented on application-specific CMOS hardware and currently solves problems of up to 1024 variables. The DAs
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation. The algorithm can be seen as an analogue of quantum annealing under the restriction of a product state space, where the dynami