ﻻ يوجد ملخص باللغة العربية
The $g$-girth-thickness $theta(g,G)$ of a graph $G$ is the minimum number of planar subgraphs of girth at least $g$ whose union is $G$. In this paper, we determine the $6$-girth-thickness $theta(6,K_n)$ of the complete graph $K_n$ in almost all cases. And also, we calculate by computer the missing value of $theta(4,K_n)$.
Let $ Pi_q $ be the projective plane of order $ q $, let $psi(m):=psi(L(K_m))$ the pseudoachromatic number of the complete line graph of order $ m $, let $ ain { 3,4,dots,tfrac{q}{2}+1 } $ and $ m_a=(q+1)^2-a $. In this paper, we improve the upper
We show that the abelian girth of a graph is at least three times its girth. We prove an analogue of the Moore bound for the abelian girth of regular graphs, where the degree of the graph is fixed and the number of vertices is large. We conclude that
Let $H_{mathrm{WR}}$ be the path on $3$ vertices with a loop at each vertex. D. Galvin conjectured, and E. Cohen, W. Perkins and P. Tetali proved that for any $d$-regular simple graph $G$ on $n$ vertices we have $$hom(G,H_{mathrm{WR}})leq hom(K_{d+1}
In 1975 Bollobas, ErdH os, and Szemeredi asked the following question: given positive integers $n, t, r$ with $2le tle r-1$, what is the largest minimum degree $delta(G)$ among all $r$-partite graphs $G$ with parts of size $n$ and which do not contai
A graph $G$ is $F$-saturated if it contains no copy of $F$ as a subgraph but the addition of any new edge to $G$ creates a copy of $F$. We prove that for $s geq 3$ and $t geq 2$, the minimum number of copies of $K_{1,t}$ in a $K_s$-saturated graph is