ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

129   0   0.0 ( 0 )
 نشر من قبل Oleg Denisov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{rm{hT}}^{2}$ region, i.e. $P_{rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{rm{hT}}^{2}$ to study the dependence of the average transverse momentum $langle P_{rm{hT}}^{2}rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.



قيم البحث

اقرأ أيضاً

Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the vi rtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 < Q2 < 60 (GeV/c)^2 in the photon virtuality, 0.004 < x < 0.4, 0.1 < y < 0.7, 0.20 < z < 0.85, and W > 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of pi^pm and K^pm mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x_B, Q^2, z, and P_hperp. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.
135 - Mark D. Baker 2013
The azimuthal asymmetry and the transverse momentum of forward produced charged hadrons in deep inelastic muon scattering have been studied as a function of the event kinematics and of the hadron variables. Primordial $k_T$ of the struck parton and O ($alpha_s$) corrections to the cross-section are expected to contribute to the transverse momentum and the azimuthal asymmetry of hadrons. The data show some unexpected dependences not present in a Monte Carlo simulation which includes the theoretical parton-level azimuthal asymmetry.
Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributio ns are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $langle p_T^2 rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $langle p_T^2 rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $langle k_{perp}^2 rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا