ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

121   0   0.0 ( 0 )
 نشر من قبل Andrea Bressan
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $langle p_T^2 rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $langle p_T^2 rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $langle k_{perp}^2 rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

قيم البحث

اقرأ أيضاً

79 - Mark D. Baker 2013
The azimuthal asymmetry and the transverse momentum of forward produced charged hadrons in deep inelastic muon scattering have been studied as a function of the event kinematics and of the hadron variables. Primordial $k_T$ of the struck parton and O ($alpha_s$) corrections to the cross-section are expected to contribute to the transverse momentum and the azimuthal asymmetry of hadrons. The data show some unexpected dependences not present in a Monte Carlo simulation which includes the theoretical parton-level azimuthal asymmetry.
A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: ph oton virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{rm{hT}}^{2}$ region, i.e. $P_{rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{rm{hT}}^{2}$ to study the dependence of the average transverse momentum $langle P_{rm{hT}}^{2}rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.
We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.
The production of D* and D mesons in inelastic scattering of 160 GeV/c muons off a ^6LiD target has been investigated with the COMPASS spectrometer at CERN for 0.003 (GeV/c)^2 < Q^2 < 10 (GeV/c)^2 and 3x10^-5< x_Bj < 0.1. The study is based on 8100 e vents where a D^0 or anti D^0 is detected subsequently to a D*+ or D*- decay, and on 34000 events, where only a D^0 or anti D^0 is detected. Kinematic distributions of D*, D and K*_2 are given as a function of their energy E, transverse momentum p_T, energy fraction z, and of the virtual photon variables nu, Q^2 and x_Bj. Semi-inclusive differential D* production cross-sections are compared with theoretical predictions for D* production via photon-gluon fusion into open charm. The total observed production cross-section for D*+/- mesons with laboratory energies between 22 and 86 GeV is 1.9 nb. Significant cross-section asymmetries are observed between D*+ and D*- production for nu<40 GeV and z>0.6.
First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with t he COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا