ﻻ يوجد ملخص باللغة العربية
We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.
We analyse the linear response properties of the uniformly heated granular gas. The intensity of the stochastic driving fixes the value of the granular temperature in the non-equilibrium steady state reached by the system. Here, we investigate two sp
We determine the nonlocal stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to partic
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompres
The Kovacs effect is a remarkable feature of the ageing dynamics of glass forming liquids near the glass transition temperature. It consists in a non-monotonous evolution of the volume/enthalpy after a succession of two abrupt temperature changes: fi
To understand the non-exponential relaxation associated with solvation dynamics in the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate, we study power spectra of the fluctuating Franck-Condon energy gap of a diatomic probe solute via mol