ترغب بنشر مسار تعليمي؟ اضغط هنا

The MUSE Hubble Ultra Deep Field Survey: VII. FeII* Emission in Star-Forming Galaxies

96   0   0.0 ( 0 )
 نشر من قبل Hayley Finley
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-resonant FeII* 2365, 2396, 2612, 2626 emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3x3 mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 FeII* emitters and 50 MgII 2796, 2803 emitters from a sample of 271 [OII] 3726, 3729 emitters with reliable redshifts from z = 0.85 - 1.5 down to 2E-18 (3 sigma) ergs/s/cm^2 (for [OII]), covering the stellar mass range 10^8 - 10^11 Msun. The FeII* and MgII emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 10^9 Msun and star formation rates (SFRs) of <1 Msun/year have MgII emission without accompanying FeII* emission, whereas galaxies with masses above 10^10 Msun and SFRs >10 Msun/year have FeII* emission without accompanying MgII emission. Between these two regimes, galaxies have both MgII and FeII* emission, typically with MgII P-Cygni profiles. Indeed, the MgII profile shows a progression along the main sequence from pure emission to P-Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgII emission profiles have lower star formation rate surface densities than those with either MgII P-Cygni profiles or FeII* emission. These spectral signatures produced through continuum scattering and fluorescence, MgII P-Cygni profiles and FeII* emission, are better candidates for tracing galactic outflows than pure MgII emission, which may originate from HII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.



قيم البحث

اقرأ أيضاً

The physical origin of the near-ultraviolet MgII emission remains an under-explored domain, contrary to more typical emission lines detected in the spectra of star-forming galaxies. We explore the nebular and physical properties for a sample of 381 g alaxies between 0.70 < z < 2.34 drawn from the MUSE Hubble Ultra Deep Survey. The spectra of these galaxies show a wide variety of profiles of the MgII 2796,2803 resonant doublet, from absorption to emission. We present a study on the main drivers for the detection of MgII emission in galaxy spectra. By exploiting photoionization models we verified that the emission-line ratios observed in galaxies with MgII in emission are consistent with nebular emission from HII regions. From a simultaneous analysis of MUSE spectra and ancillary HST information via spectral energy distribution (SED) fitting, we find that galaxies with MgII in emission have lower stellar masses, smaller sizes, bluer spectral slopes and lower optical depth than those with absorption. This leads us to suggest that MgII emission is a potential tracer of physical conditions not merely related to those of the ionized gas. We show that these differences in MgII emission/absorption can be explained in terms of a higher dust and neutral gas content in the interstellar medium (ISM) of galaxies showing MgII in absorption, confirming the extreme sensitivity of MgII to the presence of the neutral ISM. We conclude with an analogy between the MgII doublet and the Ly-alpha line, due to their resonant nature. Further investigations with current and future facilities, including JWST, are promising as the detection of MgII emission and its potential connection with Ly-alpha could provide new insights on the ISM content in the early Universe.
We report the detection of extended Lyman-alpha (Lya) haloes around 145 individual star-forming galaxies at redshifts 3<z<6 in the Hubble Ultra Deep Field observed with the Multi-Unit Spectroscopic Explorer at ESO-VLT. Our sample consists of continuu m-faint (-15> M_{UV}> -22) Lya emitters (LAEs). Using a 2D, two-component decomposition of Lya emission assuming circular exponential distributions, we measure scale lengths and luminosities of Lya haloes. We find that 80% of our objects having reliable Lya halo measurements show Lya emission that is significantly more extended than the UV continuum detected by HST (by a factor ~4 to >20). The median exponential scale length of the Lya haloes in our sample is ~4.5 kpc. By comparing the maximal detected extent of the Lya emission with the predicted dark matter halo virial radii of simulated galaxies, we show that the detected Lya emission of our selected sample of LAEs probes a significant portion of the cold circum-galactic medium (CGM) of these galaxies (>50% in average). This result shows that there must be significant HI reservoirs in the CGM and reinforces the idea that Lya haloes are ubiquitous around high-redshift Lya emitting galaxies. Our characterization of the Lya haloes indicates that the majority of the Lya flux comes from the halo (~65%) and that their scale lengths seem to be linked to the UV properties of the galaxies. We do not observe a significant Lya halo size evolution with redshift. We also find that the Lya lines cover a large range of full width at half maximum (FWHM) from 118 to 512 km/s. While the FWHM does not seem to be correlated to the Lya scale length, most compact Lya haloes and those that are not detected with high significance tend to have narrower Lya profiles. Finally, we investigate the origin of the extended Lya emission but we conclude that our data do not allow us to disentangle the possible processes.
We present spatially resolved maps of six individually-detected Lyman alpha haloes (LAHs) as well as a first statistical analysis of the Lyman alpha (Lya) spectral signature in the circum-galactic medium of high-redshift star-forming galaxies using M USE. Our resolved spectroscopic analysis of the LAHs reveals significant intrahalo variations of the Lya line profile. Using a three-dimensional two-component model for the Lya emission, we measure the full width at half maximum (FWHM), the peak velocity shift and the asymmetry of the Lya line in the core and in the halo of 19 galaxies. We find that the Lya line shape is statistically different in the halo compared to the core for ~40% of our galaxies. Similarly to object-by-object based studies and a recent resolved study using lensing, we find a correlation between the peak velocity shift and the width of the Lya line both at the interstellar and circum-galactic scales. While there is a lack of correlation between the spectral properties and the spatial scale lengths of our LAHs, we find a correlation between the width of the line in the LAH and the halo flux fraction. Interestingly, UV bright galaxies show broader, more redshifted and less asymmetric Lya lines in their haloes. The most significant correlation found is for the FWHM of the line and the UV continuum slope of the galaxy, suggesting that the redder galaxies have broader Lya lines. The generally broad and red line shapes found in the halo component suggests that the Lya haloes are powered either by scattering processes through an outflowing medium, fluorescent emission from outflowing cold clumps of gas, or a mix of both. Considering the large diversity of the Lya line profiles observed in our sample and the lack of strong correlation, the interpretation of our results is still broadly open and underlines the need for realistic spatially resolved models of the LAHs.
We investigate the specific angular momentum (sAM) $ j(<r)$ profiles of intermediate redshift ($0.4<z<1.4$) star-forming galaxies (SFGs) in the relatively unexplored regime of low masses (down to $M_starsim 10^8$M$_{odot}$) and small sizes (down to $ R_{rm e}sim 1.5$ kpc) and characterize the sAM scaling relation and its redshift evolution. We have developed a 3D methodology to constrain sAM profiles of the star-forming gas using a forward modeling approach with galpak{} that incorporates the effects of beam smearing, yielding the intrinsic morpho-kinematic properties even with limited spatial resolution data. Using mock observations from the TNG50 simulation, we find that our 3D methodology robustly recovers the SFR-weighted $j(<r)$ profiles down to low effective signal-to-noise ratio (SNR) of $gtrapprox3$. We apply our methodology blindly to a sample of 494 OII{}-selected SFGs in the MUSE Ultra Deep Field (UDF) 9~arcmin$^2$ mosaic data, covering the unexplored $8<log M_*/$M$_{odot}<9$ mass range. We find that the (SFR-weighted) sAM relation follows $jpropto M_star^{alpha}$ with an index $alpha$ varying from $alpha=0.3$ to $alpha=0.5$, from $log M_star/$M$_{odot}=8$ to $log M_*/$M$_{odot}=10.5$. The UDF sample supports a redshift evolution consistent with the $(1+z)^{-0.5}$ expectation from a Universe in expansion. The scatter of the sAM sequence is a strong function of the dynamical state with $log j|_{M_*}propto 0.65 times log(V_{rm max}/sigma)$ where $sigma$ is the velocity dispersion at $2 R_{rm e}$. In TNG50, SFGs also form a $j-M_{star}-(V/sigma)$ plane but correlates more with galaxy size than with morphological parameters. Our results suggest that SFGs might experience a dynamical transformation before their morphological transformation to becoming passive via either merging or secular evolution.
We present the MUSE Hubble Ultra Deep Survey, a mosaic of nine MUSE fields covering 90% of the entire HUDF region with a 10-hour deep exposure time, plus a deeper 31-hour exposure in a single 1.15 arcmin2 field. The improved observing strategy and ad vanced data reduction results in datacubes with sub-arcsecond spatial resolution (0.65 arcsec at 7000 A) and accurate astrometry (0.07 arcsec rms). We compare the broadband photometric properties of the datacubes to HST photometry, finding a good agreement in zeropoint up to mAB=28 but with an increasing scatter for faint objects. We have investigated the noise properties and developed an empirical way to account for the impact of the correlation introduced by the 3D drizzle interpolation. The achieved 3 sigma emission line detection limit for a point source is 1.5 and 3.1 10-19 erg.s-1.cm-2 for the single ultra-deep datacube and the mosaic, respectively. We extracted 6288 sources using an optimal extraction scheme that takes the published HST source locations as prior. In parallel, we performed a blind search of emission line galaxies using an original method based on advanced test statistics and filter matching. The blind search results in 1251 emission line galaxy candidates in the mosaic and 306 in the ultradeep datacube, including 72 sources without HST counterparts (mAB>31). In addition 88 sources missed in the HST catalog but with clear HST counterparts were identified. This data set is the deepest spectroscopic survey ever performed. In just over 100 hours of integration time, it provides nearly an order of magnitude more spectroscopic redshifts compared to the data that has been accumulated on the UDF over the past decade. The depth and high quality of these datacubes enables new and detailed studies of the physical properties of the galaxy population and their environments over a large redshift range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا