ترغب بنشر مسار تعليمي؟ اضغط هنا

Scene-centric Joint Parsing of Cross-view Videos

282   0   0.0 ( 0 )
 نشر من قبل Yuanlu Xu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-view video understanding is an important yet under-explored area in computer vision. In this paper, we introduce a joint parsing framework that integrates view-centric proposals into scene-centric parse graphs that represent a coherent scene-centric understanding of cross-view scenes. Our key observations are that overlapping fields of views embed rich appearance and geometry correlations and that knowledge fragments corresponding to individual vision tasks are governed by consistency constraints available in commonsense knowledge. The proposed joint parsing framework represents such correlations and constraints explicitly and generates semantic scene-centric parse graphs. Quantitative experiments show that scene-centric predictions in the parse graph outperform view-centric predictions.

قيم البحث

اقرأ أيضاً

Images tell powerful stories but cannot always be trusted. Matching images back to trusted sources (attribution) enables users to make a more informed judgment of the images they encounter online. We propose a robust image hashing algorithm to perfor m such matching. Our hash is sensitive to manipulation of subtle, salient visual details that can substantially change the story told by an image. Yet the hash is invariant to benign transformations (changes in quality, codecs, sizes, shapes, etc.) experienced by images during online redistribution. Our key contribution is OSCAR-Net (Object-centric Scene Graph Attention for Image Attribution Network); a robust image hashing model inspired by recent successes of Transformers in the visual domain. OSCAR-Net constructs a scene graph representation that attends to fine-grained changes of every objects visual appearance and their spatial relationships. The network is trained via contrastive learning on a dataset of original and manipulated images yielding a state of the art image hash for content fingerprinting that scales to millions of images.
We present a method for composing photorealistic scenes from captured images of objects. Our work builds upon neural radiance fields (NeRFs), which implicitly model the volumetric density and directionally-emitted radiance of a scene. While NeRFs syn thesize realistic pictures, they only model static scenes and are closely tied to specific imaging conditions. This property makes NeRFs hard to generalize to new scenarios, including new lighting or new arrangements of objects. Instead of learning a scene radiance field as a NeRF does, we propose to learn object-centric neural scattering functions (OSFs), a representation that models per-object light transport implicitly using a lighting- and view-dependent neural network. This enables rendering scenes even when objects or lights move, without retraining. Combined with a volumetric path tracing procedure, our framework is capable of rendering both intra- and inter-object light transport effects including occlusions, specularities, shadows, and indirect illumination. We evaluate our approach on scene composition and show that it generalizes to novel illumination conditions, producing photorealistic, physically accurate renderings of multi-object scenes.
Video scene parsing is a long-standing challenging task in computer vision, aiming to assign pre-defined semantic labels to pixels of all frames in a given video. Compared with image semantic segmentation, this task pays more attention on studying ho w to adopt the temporal information to obtain higher predictive accuracy. In this report, we introduce our solution for the 1st Video Scene Parsing in the Wild Challenge, which achieves a mIoU of 57.44 and obtained the 2nd place (our team name is CharlesBLWX).
169 - Tianyi Wu , Sheng Tang , Rui Zhang 2019
Scene parsing is challenging as it aims to assign one of the semantic categories to each pixel in scene images. Thus, pixel-level features are desired for scene parsing. However, classification networks are dominated by the discriminative portion, so directly applying classification networks to scene parsing will result in inconsistent parsing predictions within one instance and among instances of the same category. To address this problem, we propose two transform units to learn pixel-level consensus features. One is an Instance Consensus Transform (ICT) unit to learn the instance-level consensus features by aggregating features within the same instance. The other is a Category Consensus Transform (CCT) unit to pursue category-level consensus features through keeping the consensus of features among instances of the same category in scene images. The proposed ICT and CCT units are lightweight, data-driven and end-to-end trainable. The features learned by the two units are more coherent in both instance-level and category-level. Furthermore, we present the Consensus Feature Network (CFNet) based on the proposed ICT and CCT units, and demonstrate the effectiveness of each component in our method by performing extensive ablation experiments. Finally, our proposed CFNet achieves competitive performance on four datasets, including Cityscapes, Pascal Context, CamVid, and COCO Stuff.
This paper addresses the problem of geometric scene parsing, i.e. simultaneously labeling geometric surfaces (e.g. sky, ground and vertical plane) and determining the interaction relations (e.g. layering, supporting, siding and affinity) between main regions. This problem is more challenging than the traditional semantic scene labeling, as recovering geometric structures necessarily requires the rich and diverse contextual information. To achieve these goals, we propose a novel recurrent neural network model, named Hierarchical Long Short-Term Memory (H-LSTM). It contains two coupled sub-networks: the Pixel LSTM (P-LSTM) and the Multi-scale Super-pixel LSTM (MS-LSTM) for handling the surface labeling and relation prediction, respectively. The two sub-networks provide complementary information to each other to exploit hierarchical scene contexts, and they are jointly optimized for boosting the performance. Our extensive experiments show that our model is capable of parsing scene geometric structures and outperforming several state-of-the-art methods by large margins. In addition, we show promising 3D reconstruction results from the still images based on the geometric parsing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا