ترغب بنشر مسار تعليمي؟ اضغط هنا

Color centers in hexagonal boron nitride monolayers: A group theory and ab-initio analysis

129   0   0.0 ( 0 )
 نشر من قبل Mehdi Abdi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study physical properties of the most promising color center candidates for the recently observed single-photon emissions in hexagonal boron nitride (h-BN) monolayers. Through our group theory analysis combined with density functional theory (DFT) calculations we provide several pieces of evidence that the electronic properties of the color centers match the characters of the experimentally observed emitters. We calculate the symmetry-adapted multi-electron wavefunctions of the defects using group theory methods and analyze the spin-orbit and spin-spin interactions in detail. We also identify the radiative and non-radiative transition channels for each color center. An advanced ab-initio DFT method is then used to compute energy levels of the color centers and their zero-phonon-line (ZPL) emissions. The computed ZPLs, the profile of excitation and emission dipole polarizations, and the competing relaxation processes are discussed and matched with the observed emission lines. By providing evidence for the relation between single-photon emitters and local defects in h-BN, this work provides the first steps towards harnessing quantum dynamics of these color centers.


قيم البحث

اقرأ أيضاً

We introduced a method to obtain the continuum description of the elastic properties of mono- layer h-BN through ab initio density functional theory. This thermodynamically rigorous contin- uum description of the elastic response is formulated by exp anding the elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. we obtained a total of fourteen nonzero independent elastic constants for the up to tenth-order tensor. We predicted the pressure dependent second-order elastic moduli. This continuum formulation is suitable for incorporation into the finite element method.
Atomically thin van der Waals crystals have recently enabled new scientific and technological breakthroughs across a variety of disciplines in materials science, nanophotonics and physics. However, non-classical photon emission from these materials h as not been achieved to date. Here we report room temperature quantum emission from hexagonal boron nitride nanoflakes. The single photon emitter exhibits a combination of superb quantum optical properties at room temperature that include the highest brightness reported in the visible part of the spectrum, narrow line width, absolute photo-stability, a short excited state lifetime and a high quantum efficiency. Density functional theory modeling suggests that the emitter is the antisite nitrogen vacancy defect that is present in single and multi-layer hexagonal boron nitride. Our results constitute the unprecedented potential of van der Waals crystals for nanophotonics, optoelectronics and quantum information processing.
Optically active defects in solids with accessible spin states are promising candidates for solid state quantum information and sensing applications. To employ these defects as quantum building blocks, coherent manipulation of their spin state is req uired. Here we realize coherent control of ensembles of boron vacancy (V$_B^-$) centers in hexagonal boron nitride (hBN). Specifically, by applying pulsed spin resonance protocols, we measure spin-lattice relaxation time ($T_1$) of 18 $mu$s and spin coherence time ($T_2$) of 2 $mu$s at room temperature. The spin-lattice relaxation time increases by three orders of magnitude at cryogenic temperature. Furthermore, employing a two- and three-pulse electron spin-echo envelope modulation (ESEEM) we separate the quadrupole and hyperfine interactions with the surrounding nuclei. Finally, by applying a method to decouple the spin state from its inhomogeneous nuclear environment - a hole-burning - the spectral optically detected magnetic resonance linewidth is significantly reduced to several tens of kHz, thus extending the spin coherence time by a factor of three. Our results are important for employment of van der Waals materials for quantum technologies, specifically in the context of using hBN as a high-resolution quantum sensor for hybrid quantum systems including 2D heterostructures, nanoscale devices and emerging atomically thin magnets.
Defect centers in hexagonal boron nitride represent room-temperature single-photon sources in a layered van der Waals material. These light emitters appear with a wide range of transition energies ranging over the entire visible spectrum, which rende rs the identification of the underlying atomic structure challenging. In addition to their eminent properties as quantum light emitters, the coupling to phonons is remarkable. Their photoluminescence exhibits significant side band emission well separated from the zero phonon line (ZPL) and an asymmetric broadening of the ZPL itself. In this combined theoretical and experimental study we show that the phonon side bands can be well described in terms of the coupling to bulk longitudinal optical (LO) phonons. To describe the ZPL asymmetry we show that in addition to the coupling to longitudinal acoustic (LA) phonons also the coupling to local mode oscillations of the defect center with respect to the entire host crystal has to be considered. By studying the influence of the emitters wave function dimensions on the phonon side bands we find reasonable values for size of the wave function and the deformation potentials. We perform photoluminescence excitation measurements to demonstrate that the excitation of the emitters is most efficient by LO-phonon assisted absorption.
Hexagonal boron nitride (h-BN), one of the hallmark van der Waals (vdW) layered crystals with an ensemble of attractive physical properties, is playing increasingly important roles in exploring two-dimensional (2D) electronics, photonics, mechanics, and emerging quantum engineering. Here, we report on the demonstration of h-BN phononic crystal waveguides with designed pass and stop bands in the radio frequency (RF) range and controllable wave propagation and transmission, by harnessing arrays of coupled h-BN nanomechanical resonators with engineerable coupling strength. Experimental measurements validate that these phononic crystal waveguides confine and support 15 to 24 megahertz (MHz) wave propagation over 1.2 millimeters. Analogous to solid-state atomic crystal lattices, phononic bandgaps and dispersive behaviors have been observed and systematically investigated in the h-BN phononic waveguides. Guiding and manipulating acoustic waves on such additively integratable h-BN platform may facilitate multiphysical coupling and information transduction, and open up new opportunities for coherent on-chip signal processing and communication via emerging h-BN photonic and phononic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا