ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanics properties of Mono-layer Hexagonal Boron Nitride: Ab initio study

155   0   0.0 ( 0 )
 نشر من قبل Qing Peng
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduced a method to obtain the continuum description of the elastic properties of mono- layer h-BN through ab initio density functional theory. This thermodynamically rigorous contin- uum description of the elastic response is formulated by expanding the elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. we obtained a total of fourteen nonzero independent elastic constants for the up to tenth-order tensor. We predicted the pressure dependent second-order elastic moduli. This continuum formulation is suitable for incorporation into the finite element method.



قيم البحث

اقرأ أيضاً

High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment s on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm ea rlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations.
The thermal conductivity of suspended few-layer hexagonal boron nitride (h-BN) was measured using a micro-bridge device with built-in resistance thermometers. Based on the measured thermal resistance values of 11-12 atomic layer h-BN samples with sus pended length ranging between 3 and 7.5 um, the room-temperature thermal conductivity of a 11-layer sample was found to be about 360 Wm-1K-1, approaching the basal plane value reported for bulk h-BN. The presence of a polymer residue layer on the sample surface was found to decrease the thermal conductivity of a 5-layer h-BN sample to be about 250 Wm-1K-1 at 300 K. Thermal conductivities for both the 5 layer and the 11 layer samples are suppressed at low temperatures, suggesting increasing scattering of low frequency phonons in thin h-BN samples by polymer residue.
Hexagonal boron nitride (h-BN) has long been recognized as an ideal substrate for electronic devices due to its dangling-bond-free surface, insulating nature and thermal/chemical stability. Therefore, to analyse the lattice structure and orientation of h-BN crystals becomes important. Here, the stacking order and wrinkles of h-BN are investigated by transmission electron microscopy (TEM). It is experimentally confirmed that the layers in the h-BN flakes are arranged in the AA stacking. The wrinkles in a form of threefold network throughout the h-BN crystal are oriented along the armchair direction, and their formation mechanism was further explored by molecular dynamics simulations. Our findings provide a deep insight about the microstructure of h-BN and shed light on the structural design/electronic modulations of two-dimensional crystals.
We theoretically study physical properties of the most promising color center candidates for the recently observed single-photon emissions in hexagonal boron nitride (h-BN) monolayers. Through our group theory analysis combined with density functiona l theory (DFT) calculations we provide several pieces of evidence that the electronic properties of the color centers match the characters of the experimentally observed emitters. We calculate the symmetry-adapted multi-electron wavefunctions of the defects using group theory methods and analyze the spin-orbit and spin-spin interactions in detail. We also identify the radiative and non-radiative transition channels for each color center. An advanced ab-initio DFT method is then used to compute energy levels of the color centers and their zero-phonon-line (ZPL) emissions. The computed ZPLs, the profile of excitation and emission dipole polarizations, and the competing relaxation processes are discussed and matched with the observed emission lines. By providing evidence for the relation between single-photon emitters and local defects in h-BN, this work provides the first steps towards harnessing quantum dynamics of these color centers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا