ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical behavior of an impurity at the boson superfluid-Mott insulator transition

81   0   0.0 ( 0 )
 نشر من قبل Seth Whitsitt
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a universal theory for the critical behavior of an impurity at the two-dimensional superfluid-Mott insulator transition. Our analysis is motivated by a numerical study of the Bose-Hubbard model with an impurity site by Huang et al. (Phys. Rev. B 94, 220502 (2016)), who found an impurity phase transition as a function of the trapping potential. The bulk theory is described by the $O(2)$ symmetric Wilson-Fisher conformal field theory, and we model the impurity by a localized spin-1/2 degree of freedom. We also consider a generalized model by considering an $O(N)$ symmetric bulk theory coupled to a spin-$S$ degree of freedom. We study this field theory using the $epsilon = 3 - d$ expansion, where the impurity-bulk interaction flows to an infrared stable fixed point at the critical trapping potential. We determine the scaling dimensions of the impurity degree of freedom and the associated critical exponents near the critical point. We also determine the universal contribution of the impurity to the finite temperature compressibility of the system at criticality. Our results are compared with recent numerical simulations.



قيم البحث

اقرأ أيضاً

143 - A. Rancon , N. Dupuis 2012
We study the thermodynamics near the generic (density-driven) superfluid--Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy the physics is controlled by the G aussian fixed point and becomes universal. Thermodynamic quantities can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class while the microscopic physics enters only {it via} two nonuniversal parameters, namely the effective mass $m^*$ and the scattering length $a^*$ of the elementary excitations at the quantum critical point between the superfluid and Mott-insulating phase. A notable exception is the condensate density in the superfluid phase which is proportional to the quasi-particle weight $Zqp$ of the elementary excitations. The universal regime is defined by $m^*a^*{}^2 Tll 1$ and $m^*a^*{}^2|deltamu|ll 1$, or equivalently $|bar n-bar n_c|a^*{}^3ll 1$, where $deltamu=mu-mu_c$ is the chemical potential shift from the quantum critical point $(mu=mu_c,T=0)$ and $bar n-bar n_c$ the doping with respect to the commensurate density $bar n_c$ of the T=0 Mott insulator. We compute $Zqp$, $m^*$ and $a^*$ and find that they vary strongly with both the ratio $t/U$ between hopping amplitude and on-site repulsion and the value of the (commensurate) density $bar n_c$. Finally, we discuss the experimental observation of universality and the measurement of $Zqp$, $m^*$ and $a^*$ in a cold atomic gas in an optical lattice.
We study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase transition with a lattice ramping routine expected to be locally a diabatic, we observe a global mass redistribution which requires a very long time to equilibrate, more than 100 times longer than the microscopic time scales for on-site interaction and tunneling. When the sample enters the Mott insulator regime, mass transport significantly slows down. By employing fast recombination pulses to analyze the occupancy distribution, we observe similarly slow-evolving dynamics, and a lower effective temperature at the center of the sample.
We investigate magnetoresistance of a square array of superconducting islands placed on a normal metal, which offers a unique tunable laboratory for realizing and exploring quantum many-body systems and their dynamics. A vortex Mott insulator where m agnetic field-induced vortices are frozen in the dimples of the egg crate potential by their strong repulsion interaction is discovered. We find an insulator-to-metal transition driven by the applied electric current and determine critical exponents that exhibit striking similarity with the common thermodynamic liquid-gas transition. A simple and straightforward quantum mechanical picture is proposed that describes both tunneling dynamics in the deep insulating state and the observed scaling behavior in the vicinity of the critical point. Our findings offer a comprehensive description of dynamic Mott critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions.
We study near-equilibrium thermodynamics of bosonic atoms in a two-dimensional optical lattice by ramping up the lattice depth to convert a superfluid into an inhomogeneous mixture of superfluid and Mott insulator. Detailed study of in situ density p rofiles shows that, first, locally adiabatic ramps do not guarantee global thermal equilibrium. Indeed, full thermalization for typical parameters only occurs for experiment times which exceed one second. Secondly, ramping non-adiabatically to the Mott insulator regime can result in strong localized cooling at short times and global cooling once equilibrated. For an initial temperature estimated as 20 nK, we observe local temperatures as low as 1.5 nK, and a final global temperature of 9 nK. Possible cooling mechanisms include adiabatic decompression, modification of the density of states near the quantum critical regime, and the Joule-Thomson effect. **NOTE: Following submission of arXiv:0910.1382v1, a systematic correction was discovered in the density measurement, stemming from three-body losses during the imaging process. New measurements were performed, and the result is in support of the claim on the slow global dynamics. Due to the substantially altered methods and analysis, a new text has been posted as arXiv:1003.0855.
We report on a novel structural Superfluid-Mott Insulator (SF-MI) quantum phase transition for an interacting one-dimensional Bose gas within permeable multi-rod lattices, where the rod lengths are varied from zero to the lattice period length. We us e the ab-initio diffusion Monte Carlo method to calculate the static structure factor, the insulation gap, and the Luttinger parameter, which we use to determine if the gas is a superfluid or a Mott insulator. For the Bose gas within a square Kronig-Penney (KP) potential, where barrier and well widths are equal, the SF-MI coexistence curve shows the same qualitative and quantitative behavior as that of a typical optical lattice with equal periodicity but slightly larger height. When we vary the width of the barriers from zero to the length of the potential period, keeping the height of the KP barriers, we observe a new way to induce the SF-MI phase transition. Our results are of significant interest, given the recent progress on the realization of optical lattices with a subwavelength structure that would facilitate their experimental observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا