ﻻ يوجد ملخص باللغة العربية
We present a universal theory for the critical behavior of an impurity at the two-dimensional superfluid-Mott insulator transition. Our analysis is motivated by a numerical study of the Bose-Hubbard model with an impurity site by Huang et al. (Phys. Rev. B 94, 220502 (2016)), who found an impurity phase transition as a function of the trapping potential. The bulk theory is described by the $O(2)$ symmetric Wilson-Fisher conformal field theory, and we model the impurity by a localized spin-1/2 degree of freedom. We also consider a generalized model by considering an $O(N)$ symmetric bulk theory coupled to a spin-$S$ degree of freedom. We study this field theory using the $epsilon = 3 - d$ expansion, where the impurity-bulk interaction flows to an infrared stable fixed point at the critical trapping potential. We determine the scaling dimensions of the impurity degree of freedom and the associated critical exponents near the critical point. We also determine the universal contribution of the impurity to the finite temperature compressibility of the system at criticality. Our results are compared with recent numerical simulations.
We study the thermodynamics near the generic (density-driven) superfluid--Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy the physics is controlled by the G
We study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase transition with a lattice ramping routine expected to be locally a
We investigate magnetoresistance of a square array of superconducting islands placed on a normal metal, which offers a unique tunable laboratory for realizing and exploring quantum many-body systems and their dynamics. A vortex Mott insulator where m
We study near-equilibrium thermodynamics of bosonic atoms in a two-dimensional optical lattice by ramping up the lattice depth to convert a superfluid into an inhomogeneous mixture of superfluid and Mott insulator. Detailed study of in situ density p
We report on a novel structural Superfluid-Mott Insulator (SF-MI) quantum phase transition for an interacting one-dimensional Bose gas within permeable multi-rod lattices, where the rod lengths are varied from zero to the lattice period length. We us