ﻻ يوجد ملخص باللغة العربية
We study the thermodynamics near the generic (density-driven) superfluid--Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy the physics is controlled by the Gaussian fixed point and becomes universal. Thermodynamic quantities can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class while the microscopic physics enters only {it via} two nonuniversal parameters, namely the effective mass $m^*$ and the scattering length $a^*$ of the elementary excitations at the quantum critical point between the superfluid and Mott-insulating phase. A notable exception is the condensate density in the superfluid phase which is proportional to the quasi-particle weight $Zqp$ of the elementary excitations. The universal regime is defined by $m^*a^*{}^2 Tll 1$ and $m^*a^*{}^2|deltamu|ll 1$, or equivalently $|bar n-bar n_c|a^*{}^3ll 1$, where $deltamu=mu-mu_c$ is the chemical potential shift from the quantum critical point $(mu=mu_c,T=0)$ and $bar n-bar n_c$ the doping with respect to the commensurate density $bar n_c$ of the T=0 Mott insulator. We compute $Zqp$, $m^*$ and $a^*$ and find that they vary strongly with both the ratio $t/U$ between hopping amplitude and on-site repulsion and the value of the (commensurate) density $bar n_c$. Finally, we discuss the experimental observation of universality and the measurement of $Zqp$, $m^*$ and $a^*$ in a cold atomic gas in an optical lattice.
We report on a novel structural Superfluid-Mott Insulator (SF-MI) quantum phase transition for an interacting one-dimensional Bose gas within permeable multi-rod lattices, where the rod lengths are varied from zero to the lattice period length. We us
We study near-equilibrium thermodynamics of bosonic atoms in a two-dimensional optical lattice by ramping up the lattice depth to convert a superfluid into an inhomogeneous mixture of superfluid and Mott insulator. Detailed study of in situ density p
We derive the equation of state of a two-dimensional Bose gas in an optical lattice in the framework of the Bose-Hubbard model. We focus on the vicinity of the multicritical points where the quantum phase transition between the Mott insulator and the
We study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase transition with a lattice ramping routine expected to be locally a
We study thermodynamic properties of weakly interacting Bose gases above the transition temperature of Bose-Einstein condensation in the framework of a thermodynamic perturbation theory. Cases of local and non-local interactions between particles are