ترغب بنشر مسار تعليمي؟ اضغط هنا

On geometrical aspects of the graph approach to contextuality

102   0   0.0 ( 0 )
 نشر من قبل Barbara Amaral
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The connection between contextuality and graph theory has led to many developments in the field. In particular, the sets of probability distributions in many contextuality scenarios can be described using well known convex sets from graph theory, leading to a beautiful geometric characterization of such sets. This geometry can also be explored in the definition of contextuality quantifiers based on geometric distances, which is important for the resource theory of contextuality, developed after the recognition of contextuality as a potential resource for quantum computation. In this paper we review the geometric aspects of contextuality and use it to define several quantifiers, which have the advantage of being applicable to the exclusivity approach to contextuality, where previously defined quantifiers do not fit.

قيم البحث

اقرأ أيضاً

Exploring the graph approach, we restate the extended definition of noncontextuality provided by the contextuality-by-default framework. This extended definition avoids the assumption of nondisturbance, which states that whenever two contexts overlap , the marginal distribution obtained for the intersection must be the same. We show how standard tools for characterizing contextuality can also be used in this extended framework for any set of measurements and, in addition, we also provide several conditions that can be tested directly in any contextuality experiment. Our conditions reduce to traditional ones for noncontextuality if the nondisturbance assumption is satisfied.
It is well known that certain measurement scenarios behave in a way which can not be explained by classical theories but by quantum theories. This behaviours are usually studied by Bell or non-contextuality (NC) inequalities. Knowing the maximal clas sical and quantum bounds of this inequalities is interesting, but tells us little about the quantum set Q of all quantum behaviours P. Despite having a constructive description of the quantum set associated to a given inequality, the freedom to choose quantum dimension, quantum states, and quantum measurements makes the shape of such convex bodies quite elusive. It is well known that a NC-inequality can be associated to a graph and the quantum set is a combinatorial object. Extra conditions, like Bell concept of parts, may restrict the behaviours achievable within quantum theory for a given scenario. For the simplest case, CHSH inequality, the NC and Be
In this paper we present a new procedure to obtain unitary and irreducible representations of Lie groups starting from the cotangent bundle of the group (the cotangent group). We discuss some applications of the construction in quantum-optics problems.
Contextuality and nonlocality are non-classical properties exhibited by quantum statistics whose implications profoundly impact both foundations and applications of quantum theory. In this paper we provide some insights into logical contextuality and inequality-free proofs. The former can be understood as the possibility version of contextuality, while the latter refers to proofs of quantum contextuality/nonlocality that are not based on violations of some noncontextuality (or Bell) inequality. The present work aims to build a bridge between these two concepts from what we call possibilistic paradoxes, which are sets of possibilistic conditions whose occurrence implies contextuality/nonlocality. As main result, we demonstrate the existence of possibilistic paradoxes whose occurrence is a necessary and sufficient condition for logical contextuality in a very important class of scenarios. Finally, we discuss some interesting consequences arising from the completeness of these possibilistic paradoxes.
We report a method that exploits a connection between quantum contextuality and graph theory to reveal any form of quantum contextuality in high-precision experiments. We use this technique to identify a graph which corresponds to an extreme form of quantum contextuality unnoticed before and test it using high-dimensional quantum states encoded in the linear transverse momentum of single photons. Our results open the door to the experimental exploration of quantum contextuality in all its forms, including those needed for quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا