ﻻ يوجد ملخص باللغة العربية
Adaptive optimization algorithms, such as Adam and RMSprop, have shown better optimization performance than stochastic gradient descent (SGD) in some scenarios. However, recent studies show that they often lead to worse generalization performance than SGD, especially for training deep neural networks (DNNs). In this work, we identify the reasons that Adam generalizes worse than SGD, and develop a variant of Adam to eliminate the generalization gap. The proposed method, normalized direction-preserving Adam (ND-Adam), enables more precise control of the direction and step size for updating weight vectors, leading to significantly improved generalization performance. Following a similar rationale, we further improve the generalization performance in classification tasks by regularizing the softmax logits. By bridging the gap between SGD and Adam, we also hope to shed light on why certain optimization algorithms generalize better than others.
In this paper, we investigate the popular deep learning optimization routine, Adam, from the perspective of statistical moments. While Adam is an adaptive lower-order moment based (of the stochastic gradient) method, we propose an extension namely, H
Adam is a widely used optimization method for training deep learning models. It computes individual adaptive learning rates for different parameters. In this paper, we propose a generalization of Adam, called Adambs, that allows us to also adapt to d
We introduce a novel end-to-end approach for learning to cluster in the absence of labeled examples. Our clustering objective is based on optimizing normalized cuts, a criterion which measures both intra-cluster similarity as well as inter-cluster di
Many reinforcement learning applications involve the use of data that is sensitive, such as medical records of patients or financial information. However, most current reinforcement learning methods can leak information contained within the (possibly
This paper presents a general framework for norm-based capacity control for $L_{p,q}$ weight normalized deep neural networks. We establish the upper bound on the Rademacher complexities of this family. With an $L_{p,q}$ normalization where $qle p^*$,