ﻻ يوجد ملخص باللغة العربية
The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) has been conducted over a five-year period at the CFHT with the MegaCam instrument, totaling 450 nights of observations. The Wide Synoptic Survey is one component of the CFHTLS, covering 155 square degrees in four patches of 23 to 65 square degrees through the whole MegaCam filter set (u*, g, r, i, z) down to i$_{AB}$ = 24.5. With the motivation of searching for high-redshift quasars at redshifts above 6.5, we extend the multi-wavelength CFHTLS-Wide data in the Y-band down to magnitudes of $sim$ 22.5 for point sources (5$sigma$). We observed the four CFHTLS-Wide fields (except one quarter of the W3 field) in the Y-band with the WIRCam instrument at the CFHT. Each field was visited twice, at least three weeks apart. Each visit consisted of two dithered exposures. The images are reduced with the Elixir software used for the CFHTLS and modified to account for the properties of near-InfraRed (IR) data. Two series of image stacks are subsequently produced: four-image stacks for each WIRCam pointing, and one-square-degree tiles matched to the format of the CFHTLS data release. Photometric calibration is performed on stars by fitting stellar spectra to their CFHTLS photometric data and extrapolating their Y-band magnitudes. We measure a limiting magnitude of Y$_{AB} simeq 22.4$ for point sources (5$sigma$) in an aperture diameter of 0.93, over 130 square degrees. We produce a multi-wavelength catalogue combining the CFHTLS-Wide optical data with our CFHQSIR (Canada-France High-z quasar survey in the near-InfraRed) Y-band data. We derive the Y-band number counts and compare them to the VIDEO survey. We find that the addition of the CFHQSIR Y-band data to the CFHTLS optical data increases the accuracy of photometric redshifts and reduces the outlier rate from 13.8% to 8.8% in the redshift range 1.05 $lesssim$ z $lesssim$ 1.2.
Being observed only one billion years after the Big Bang, z ~ 7 quasars are a unique opportunity for exploring the early Universe. However, only two z ~ 7 quasars have been discovered in near-infrared surveys: the quasars ULAS J1120+0641 and ULAS J13
General relativity as one the pillar of modern cosmology has to be thoroughly tested if we want to achieve an accurate cosmology. We present the results from such a test on cosmological scales using cosmic shear and galaxy clustering measurements. We
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid
Radial velocity (RV) surveys supported by high precision wavelength references (notably ThAr lamps and I2 cells) have successfully identified hundreds of exoplanets; however, as the search for exoplanets moves to cooler, lower mass stars, the optimum
We present a new algorithm for fitting and classifying polarized radio sources, which is based on the QU fitting method introduced by OSullivan et al. and on our analysis of pulsars. Then we test this algorithm using Monte Carlo simulations of observ