ترغب بنشر مسار تعليمي؟ اضغط هنا

SOXS: a wide band spectrograph to follow up transients

121   0   0.0 ( 0 )
 نشر من قبل Pietro Schipani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ~ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.

قيم البحث

اقرأ أيضاً

Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients b ecause (1) X-rays can quickly localize transients with large error circles, and (2) X-rays reveal the nature of transients that may not have unique signatures at other wavelengths. In this white paper, we identify key science questions about several extragalactic multi-messenger and multi-wavelength transients, and demonstrate how X-ray follow-up helps answer these questions
The Burst Observer and Optical Transient Exploring System (BOOTES) is a network of telescopes that allows the continuous monitoring of transient astrophysical sources. It was originally devoted to the study of the optical emission from gamma-ray burs ts (GRBs) that occur in the Universe. In this paper we show the initial results obtained using the spectrograph COLORES (mounted on BOOTES-2), when observing optical transients (OTs) of diverse nature.
The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dis persers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument.
An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spe ctroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the 4C design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.
The first gravitational-wave (GW) observations will greatly benefit from the detection of coincident electromagnetic counterparts. Electromagnetic follow-ups will nevertheless be challenging for GWs with poorly reconstructed directions. GW source loc alization can be inefficient (i) if only two GW observatories are in operation; (ii) if the detectors sensitivities are highly non-uniform; (iii) for events near the detectors horizon distance. For these events, follow-up observations will need to cover 100-1000 square degrees of the sky over a limited period of time, reducing the list of suitable telescopes. We demonstrate that the Cherenkov Telescope Array will be capable of following up GW event candidates over the required large sky area with sufficient sensitivity to detect short gamma-ray bursts, which are thought to originate from compact binary mergers, out to the horizon distance of advanced LIGO/Virgo. CTA can therefore be invaluable starting with the first multimessenger detections, even with poorly reconstructed GW source directions. This scenario also provides a further scientific incentive for GW observatories to further decrease the delay of their event reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا