ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust integer and fractional helical modes in the quantum Hall effect

147   0   0.0 ( 0 )
 نشر من قبل Yonatan Cohen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic systems harboring one dimensional helical modes, where the spin and momentum of the electron are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity, a unique phase that gives rise to exotic Majorana zero modes. Even more interesting are fractional helical states which have not been observed before and which open the route for the realization of the generalized para fermions quasiparticles. Possessing non abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one dimensional helical and fractional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double quantum well structure in a high mobility GaAs based system. In turn, the quantum well hosts two sub bands of 2D electrons, each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter propagating integer, as well as fractional, edge modes, belonging to Landau levels with opposite spins are formed, rendering the modes helical. We demonstrate that due to spin protection, these helical modes remain ballistic, without observed mixing for large distances. In addition to the formation of helical modes, this new platform can be exploited as a rich playground for an artificial induction of compounded fractional edge modes, as well as construction of interferometers based on chiral edge modes.

قيم البحث

اقرأ أيضاً

Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r egime. The pairing takes place within an interfering edge channel circulating in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, $2<{ u} _B<5$. The main observations are: (a) High visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity ${Delta}{phi}={varphi}_0/2=h/2e$ (instead of the ubiquitous $h/e$), with $e$ the electron charge and $h$ the Planck constant; (b) An interfering quasiparticle charge $e ^* {sim} 2e$ - revealed by quantum shot noise measurements; and (c) Full dephasing of the $h/2e$ periodicity by induced dephasing of the adjacent edge channel (while keeping the interfering edge channel intact) : a clear realization of inter-channel entanglement. While this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to e-e attraction within a single edge channel is not clear.
In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are character ized by non-Abelian statistics of their quasiparticles. Here we focus on conditions for their realization and competition among them at half-integer filling factors. Using the Dirac composite fermion description, in the presence of a mass term, we study the influence of Landau level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are selected when Landau level mixing is not strong, and can be taken into account perturbatively, the PH Pfaffian state requires non-perturbative inclusion of at least two Landau levels. Our findings, for small Landau level mixing, are in accordance with numerical investigations in the literature, and call for a non-perturbative approach in the search for PH Pfaffian correlations. We demonstrated that a method based on the Chern-Simons field-theoretical approach can be used to generate characteristic interaction pseudo-potentials for Pfaffian paired states.
Since the charged mode is much faster than the neutral modes on quantum Hall edges at large filling factors, the edge may remain out of equilibrium in thermal conductance experiments. This sheds light on the observed imperfect quantization of the the rmal Hall conductance at $ u=8/3$ and can increase the observed thermal conductance by two quanta at $ u=8/5$. Under certain unlikely but not impossible assumptions, this might also reconcile the observed thermal conductance at $ u=5/2$ with not only the PH-Pfaffian order but also the anti-Pfaffian order.
229 - I. Skachko , X. Du , F. Duerr 2009
We report the observation of the quantized Hall effect in suspended graphene probed with a two-terminal lead geometry. The failure of earlier Hall-bar measurements is discussed and attributed to the placement of voltage probes in mesoscopic samples. New quantized states are found at integer Landau level fillings outside the sequence 2,6,10.., as well as at a fractional filling u=1/3. Their presence is revealed by plateaus in the two-terminal conductance which appear in magnetic fields as low as 2 Tesla at low temperatures and persist up to 20 Kelvin in 12 Tesla. The excitation gaps, extracted from the data with the help of a theoretical model, are found to be significantly larger than in GaAs based electron systems.
Elementary quasi-particles in a two dimensional electron system can be described as exciton-polarons since electron-exciton interactions ensures dressing of excitons by Fermi-sea electron-hole pair excitations. A relevant open question is the modific ation of this description when the electrons occupy flat-bands and electron-electron interactions become prominent. Here, we perform cavity spectroscopy of a two dimensional electron system in the strong-coupling regime where polariton resonances carry signatures of strongly correlated quantum Hall phases. By measuring the evolution of the polariton splitting under an external magnetic field, we demonstrate the modification of electron-exciton interactions that we associate with phase space filling at integer filling factors and polaron dressing at fractional filling factors. The observed non-linear behavior shows great promise for enhancing polariton-polariton interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا