ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic phase separation of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex revealed by muSR

73   0   0.0 ( 0 )
 نشر من قبل A. de Visser
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The compound Sr$_{0.5}$Ce$_{0.5}$FBiS$_{2}$ belongs to the intensively studied family of layered BiS$_2$ superconductors. It attracts special attention because superconductivity at $T_{sc} = 2.8$ K was found to coexist with local-moment ferromagnetic order with a Curie temperature $T_C = 7.5$ K. Recently it was reported that upon replacing S by Se $T_C$ drops and ferromagnetism becomes of an itinerant nature (Thakur et al., Sci. Reports 6, 37527 (2016)). At the same time $T_{sc}$ increases and it was argued superconductivity coexists with itinerant ferromagnetism. Here we report a muon spin rotation and relaxation study ($mu$SR) conducted to investigate the coexistence of superconductivity and ferromagnetic order in Sr$_{0.5}$Ce$_{0.5}$FBiS$_{2-x}$Se$_x$ with $x=0.5$ and $1.0$. By inspecting the muon asymmetry function we find that both phases do not coexist on the microscopic scale, but occupy different sample volumes. For $x=0.5$ and $x=1.0$ we find a ferromagnetic volume fraction of $sim , 8 %$ and $sim , 30 %$ at $T=0.25$ K, well below $T_{C} = 3.4$ K and $T_C = 3.3$ K, respectively. For $x=1.0$ ($T_{sc} = 2.9$ K) the superconducting phase occupies the remaining sample volume ($sim , 70 %$), as shown by transverse field experiments that probe the Gaussian damping due to the vortex lattice. We conclude ferromagnetism and superconductivity are macroscopically phase separated.



قيم البحث

اقرأ أيضاً

We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (x = 0.5, 1) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se-doping produces several effects: it suppresses semiconducting like behavior observed in the undoped Sr0.5Ce0.5FBiS2, ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and superconducting transition temperature, Tc, gets enhanced slightly to 2.9 - 3.3 K. Thus in these Se-doped materials, TFM is just marginally higher than Tc. Magnetization studies provide an evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex. Quite remarkably, as compared with the effective paramagnetic Ce-moment (~ 2.2 muB), the ferromagnetically ordered Ce-moment in the superconducting state is rather small (~ 0.1 muB). To the best of our knowledge, the title compounds are the first Ce-based superconducting itinerant ferromagnetic materials (Tc < TFM). We stress that Ce-4f electrons are responsible for both superconductivity and ferromagnetism just as U-5f electrons are in UCoGe. Furthermore, a novel feature of these materials is a dual hysteresis loop corresponding to both the ferromagnetism and the coexisting superconductivity. Such features of Sr0.5Ce0.5FBiS2-xSex put these materials apart from the well known U-containing superconducting ferromagnets reported so far.
We investigated the effects of Se substitution on the lattice constants and superconducting properties of CeO0.5F0.5Bi(S1-xSex)2. With increasing Se concentration, the a lattice constant increased, while the c lattice constant did not show any signif icant increase between x = 0.1 and x = 0.5. Bulk superconductivity was observed in samples with x = 0.2-0.4, and the superconducting transition temperature was the highest at x = 0.3. The obtained superconductivity phase diagram was compared to those of LaO0.5F0.5Bi(S1-xSex)2 and NdO0.5F0.5Bi(S1-xSex)2.
411 - M. Ricco , T. Shiroka , E. Zannoni 2002
The family of superconducting fullerides (NH_3)_xNaK_2C_60 shows an anomalous correlation between T_c and lattice parameter. To better understand the origin of this anomaly we have studied a representative x=0.75 compound using SQUID magnetometry and MuSR spectroscopy. The lower critical field H_c1, measured by the trapped magnetization method, is less than 1 G, a very small value as compared with that of other fullerides. Muon spin depolarization in the superconducting phase shows also quite small local field inhomogeneities, of the order of those arising from nuclear dipolar fields. On the other hand, the 40 T value for H_c2, as extracted from magnetometry data, is comparable to that of other fullerides. We show that these observations cannot be rationalized within the framework of the Ginzburg-Landau theory of superconductivity. Instead, the anomalous magnetic properties could be interpreted taking into account the role played by polaronic instabilities in this material.
We have investigated Se substitution effect to superconductivity of an optimally-doped BiS2-based superconductor Eu0.5La0.5FBiS2. Eu0.5La0.5FBiS2-xSex samples with x = 0-1 were synthesized. With increasing x, in-plane chemical pressure is enhanced. F or x = 0.6, 0.8, and 1, superconducting transitions with a large shielding volume fraction are observed in magnetic susceptibility measurements, and the highest Tc is 3.8 K for x = 0.8. From low-temperature electrical resistivity measurements, a zero-resistivity state is observed for all the samples, and the highest Tc is observed for x = 0.8. With increasing Se concentration, characteristics of electrical resistivity changes from semiconducting-like to metallic, suggesting that the emergence of bulk superconductivity is linked with the enhanced metallicity. A superconductivity phase diagram of the Eu0.5La0.5FBiS2-xSex superconductor is established. Temperature dependences of electrical resistivity show an anomalous two-step transition under high magnetic fields. Hence, the resistivity data are analyzed with assuming in-plane anisotropy of upper critical field.
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is sues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure ($p$) were studied by means of muon spin rotation. The magnetism remains bulk up to $psimeq3.5$~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at $psimeq$7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum $T_c simeq 1.2$~K which decreases upon increasing the pressure. In the intermediate pressure region ($3.5lesssim plesssim 7$~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature ($T_c$) and of the superfluid density ($rho_s$). A scaling of $rho_s$ with $T_c^{3.2}$ as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا