ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic order and phase transition in the iron oxysulfide La2O2Fe2OS2

109   0   0.0 ( 0 )
 نشر من قبل Emma McCabe
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mott-insulating iron oxychalcogenides exhibit complex magnetic behaviour and we report here a neutron diffraction investigation into the magnetic ordering in La2O2Fe2OS2. This quaternary oxysulfide adopts the anti-Sr2MnO2Sb2-type structure and orders antiferromagnetically below TN = 105 K. We consider both its long-range magnetic structure and its magnetic microstructure, and the onset of magnetic order. It adopts the multi-k vector 2k magnetic structure (k = (0.5 0 0.5) and k = (0 0.5 0.5) and has similarities with related iron oxychalcogenides, illustrating the robust nature of the 2k magnetic structure.



قيم البحث

اقرأ أيضاً

The ability to tune the iron chalcogenides BaFe2Q3 from Mott insulators, to metals and then superconductors with applied pressure has renewed interest in low-dimensional iron chalcogenides and oxychalcogenides. We report here a combined experimental and theoretical study on the iron oxychalcogenides BaFe2Q2O (Q=S, Se) and show that their magnetic behaviour results from nearest-neighbour magnetic exchange interactions via oxide and selenide anions of similar strength, with properties consistent with more localised electronic structures than those of BaFe2Q3 systems.
The origin of non-collinear magnetic order in UO$_{2}$ is studied by an ab initio dynamical-mean-field-theory framework in conjunction with a linear-response approach for evaluating inter-site superexchange interactions between U 5$f^{2}$ shells. The calculated quadrupole-quadruple superexchange interactions are found to unambiguously resolve the frustration of face-centered-cubic U sublattice toward stabilization of the experimentally observed non-collinear 3k-magnetic order. Therefore, the exotic 3k antiferromagnetic order in UO$_{2}$ can be accounted for by a purely electronic exchange mechanism acting in the undistorted cubic lattice structure. The quadrupolar short-range order above magnetic ordering temperature $T_N$ is found to qualitatively differ from the long-range order below $T_N$.
Recent theoretical studies [Chen et al., Phys. Rev. B 82, 174440 (2010), Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetr y without breaking time reversal symmetry leading to a nematic phase just above magnetic ordering temperature. We present high-resolution calorimetric and magnetization data of the same Ba2NaOsO6 single crystal and show evidence for a weakly field-dependent phase transition occurring at a temperature of Ts ~ 9.5K, above the magnetic ordering temperature of Tc ~ 7.5K. This transition appears as a broadened step in the low-field temperature dependence of the specific heat. The evolution of the phase boundary with applied magnetic field suggests that this phase coincides with the phase of broken local point symmetry seen in high field NMR experiments [Lu et al., Nat. Comm. 8 14407 (2017)]. Furthermore, the magnetic field dependence of the specific heat provides clear indications for magnetic correlations persisting at temperatures between Tc and Ts where long-range magnetic order is absent giving support for the existence of the proposed nematic phase.
Control of emergent magnetic orders in correlated electron materials promises new opportunities for applications in spintronics. For their technological exploitation, it is important to understand the role of surfaces and interfaces to other material s and their impact on the emergent magnetic orders. Here, we demonstrate for iron telluride, the nonsuperconducting parent compound of the iron chalcogenide superconductors, determination and manipulation of the surface magnetic structure by low-temperature spin-polarized scanning tunneling microscopy. Iron telluride exhibits a complex structural and magnetic phase diagram as a function of interstitial iron concentration. Several theories have been put forward to explain the different magnetic orders observed in the phase diagram, which ascribe a dominant role either to interactions mediated by itinerant electrons or to local moment interactions. Through the controlled removal of surface excess iron, we can separate the influence of the excess iron from that of the change in the lattice structure.
Taking the pseudobinary C15-Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic(FM) to antiferromagnetic(AFM) phase transition, we present interesting thermomagnetic history effects in magnetotransport measu rements across this FM-AFM transition. We argue that these distinctive hysteretic features can be used to identify the exact nature -first order or second order - of this kind of transition in magnetic systems where electrical transport is strongly correlated with the underlying magnetic order. A comparison is made with the similar FM-AFM transitions observed in Nd and Pr-based manganese compounds with perovskite-type structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا