ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition preceding magnetic long-range order in the double perovskite Ba2NaOsO6

97   0   0.0 ( 0 )
 نشر من قبل Kristin Willa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent theoretical studies [Chen et al., Phys. Rev. B 82, 174440 (2010), Ishizuka et al., Phys. Rev. B 90, 184422 (2014)] for the magnetic Mott insulator Ba2NaOsO6 have proposed a low-temperature order parameter that breaks lattice rotational symmetry without breaking time reversal symmetry leading to a nematic phase just above magnetic ordering temperature. We present high-resolution calorimetric and magnetization data of the same Ba2NaOsO6 single crystal and show evidence for a weakly field-dependent phase transition occurring at a temperature of Ts ~ 9.5K, above the magnetic ordering temperature of Tc ~ 7.5K. This transition appears as a broadened step in the low-field temperature dependence of the specific heat. The evolution of the phase boundary with applied magnetic field suggests that this phase coincides with the phase of broken local point symmetry seen in high field NMR experiments [Lu et al., Nat. Comm. 8 14407 (2017)]. Furthermore, the magnetic field dependence of the specific heat provides clear indications for magnetic correlations persisting at temperatures between Tc and Ts where long-range magnetic order is absent giving support for the existence of the proposed nematic phase.

قيم البحث

اقرأ أيضاً

The double-perovskite A$_2$BBO$_6$ with heavy transition metal ions on the ordered B sites is an important family of compounds to study the interplay between electron correlation and spin-orbit coupling (SOC). Here we prepared high-quality Sr$_2$MgRe O$_6$ powder and single-crystal samples and performed non-resonant and resonant synchrotron x-ray diffraction experiments to investigate its magnetic ground state. By combining the magnetic susceptibility and heat capacity measurements, we conclude that Sr$_2$MgReO$_6$ exhibits a layered antiferromagnetic (AF) order at temperatures below $sim$ 55 K with a propagation vector q = (001), which contrasts the previously suspected spin glass state. Our works clarify the magnetic order in Sr$_2$MgReO$_6$ and demonstrate it as a candidate system to look for magnetic octupolar orders and exotic spin dynamics.
Oxide double perovskites wherein octahedra formed by both 3d elements and sp-based heavy elements give rise to unconventional magnetic ordering and correlated quantum phenomena crucial for futuristic applications. Here, by carrying out experimental a nd first principles investigations, we present the electronic structure and magnetic phases of Ba2MnTeO6, where Mn^2+ ions with S = 5/2 spins constitute a perfect triangular lattice. The magnetic susceptibility reveals a large Curie- Weiss temperature -152 K suggesting the presence of strong antiferromagnetic interactions between Mn^2+ moments in the spin lattice. A phase transition at 20 K is revealed by magnetic susceptibility and specific heat which is attributed to the presence of a sizeable inter-plane interactions. Below the transition temperature, the specific heat data show antiferromagnetic magnon excitations with a gap of 1.4 K. Furthermore, muon spin-relaxation reveals the presence of static internal fields in the ordered state and provides strong evidence of short-range spin correlations for T > TN. The DFT+U calculations and spin-dimer analysis infer that Heisenberg interactions govern the inter and intra-layer spin-frustrations in this perovskite. The inter and intra-layer exchange interactions are of comparable strengths (J1 = 4.6 K, J2 = 0.92 J1). However, a weak third nearest-neighbor ferromagnetic inter-layer interaction exists (J3=-0.04 J1) due to double-exchange interaction via the linear path Mn-O-Te-O-Mn. The combined effect of J2 and J3 interactions stabilizes a three dimensional long-range magnetic ordering in this frustrated magnet.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr ibing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
Structural and magnetic transitions in a double perovskite hosting 5d1 Re ions are discussed on the basis of recently published high-resolution x-ray diffraction patterns [D. Hirai, et al., Phys. Rev. Res. 2, 022063(R) (2020)]. A reported structural transition below room temperature, from cubic to tetragonal symmetry, appears not to be driven by T2g-type quadrupoles, as suggested. A magnetic motif at lower temperature is shown to be composed of two order parameters, associated with propagation vectors k = (0, 0, 1) and k = (0, 0, 0). Findings from our studies, for structural and magnetic properties of Ba2MgReO6, surface in predicted amplitudes for x-ray diffraction at rhenium L2 and L3 absorption edges, and magnetic neutron Bragg diffraction. Specifically, entanglement of anapole and spatial degrees of freedom creates a quadrupole in the neutron scattering amplitude. It would be excluded in an unexpected scenario whereby the rhenium atomic state is a manifold. Also, a chiral signature visible in resonant x-ray diffraction will be one consequence of predicted electronic quadrupole and magnetic dipole orders. A model Re wave function consistent with all current knowledge is a guide to electronic and magnetic multipoles engaged in x-ray and neutron diffraction investigations.
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr2ScOsO6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Density functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا