ﻻ يوجد ملخص باللغة العربية
Let $f$ be a band-limited function in $L^2({mathbb{R}})$. Fix $T >0$ and suppose $f^{prime}$ exists and is integrable on $[-T, T]$. This paper gives a concrete estimate of the error incurred when approximating $f$ in the root mean square by a partial sum of its Hermite series. Specifically, we show, for $K=2n, quad n in Z_+,$ $$ left[frac{1}{2T}int_{-T}^T[f(t)-(S_Kf)(t)]^2dtright]^{1/2}leq left(1+frac 1Kright)left(left[ frac{1}{2T}int_{|t|> T}f(t)^2dtright]^{1/2} +left[frac{1}{2T} int_{|omega|>N}|hat f(omega)|^2domegaright]^{1/2} right) +frac{1}{K}left[frac{1}{2T}int_{|t|leq T}f_N(t)^2dtright]^{1/2} +frac{1}{pi}left(1+frac{1}{2K}right)S_a(K,T), $$ in which $S_Kf$ is the $K$-th partial sum of the Hermite series of $f, hat f $ is the Fourier transform of $f$, $displaystyle{N=frac{sqrt{2K+1}+% sqrt{2K+3}}{2}}$ and $f_N=(hat f chi_{(-N,N)})^vee(t)=frac{1}{pi}int_{-infty}^{infty}frac{sin (N(t-s))}{t-s}f(s)ds$. An explicit upper bound is obtained for $S_{a}(K,T)$.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an
This paper is devoted to $L^2$ estimates for trilinear oscillatory integrals of convolution type on $mathbb{R}^2$. The phases in the oscillatory factors include smooth functions and polynomials. We shall establish sharp $L^2$ decay estimates of trili
Using Guths polynomial partitioning method, we obtain $L^p$ estimates for the maximal function associated to the solution of Schrodinger equation in $mathbb R^2$. The $L^p$ estimates can be used to recover the previous best known result that $lim_{t
Recent years have witnessed a controversy over Heisenbergs famous error-disturbance relation. Here we resolve the conflict by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. We discuss
In this paper, we prove two improv