ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Supervised Instance Population of an Ontology using Word Vector Embeddings

89   0   0.0 ( 0 )
 نشر من قبل Vindula Jayawardana
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In many modern day systems such as information extraction and knowledge management agents, ontologies play a vital role in maintaining the concept hierarchies of the selected domain. However, ontology population has become a problematic process due to its nature of heavy coupling with manual human intervention. With the use of word embeddings in the field of natural language processing, it became a popular topic due to its ability to cope up with semantic sensitivity. Hence, in this study, we propose a novel way of semi-supervised ontology population through word embeddings as the basis. We built several models including traditional benchmark models and new types of models which are based on word embeddings. Finally, we ensemble them together to come up with a synergistic model with better accuracy. We demonstrate that our ensemble model can outperform the individual models.



قيم البحث

اقرأ أيضاً

Selecting a representative vector for a set of vectors is a very common requirement in many algorithmic tasks. Traditionally, the mean or median vector is selected. Ontology classes are sets of homogeneous instance objects that can be converted to a vector space by word vector embeddings. This study proposes a methodology to derive a representative vector for ontology classes whose instances were converted to the vector space. We start by deriving five candidate vectors which are then used to train a machine learning model that would calculate a representative vector for the class. We show that our methodology out-performs the traditional mean and median vector representations.
Word translation is an integral part of language translation. In machine translation, each language is considered a domain with its own word embedding. The alignment between word embeddings allows linking semantically equivalent words in multilingual contexts. Moreover, it offers a way to infer cross-lingual meaning for words without a direct translation. Current methods for word embedding alignment are either supervised, i.e. they require known word pairs, or learn a cross-domain transformation on fixed embeddings in an unsupervised way. Here we propose an end-to-end approach for word embedding alignment that does not require known word pairs. Our method, termed Word Alignment through MMD (WAM), learns embeddings that are aligned during sentence translation training using a localized Maximum Mean Discrepancy (MMD) constraint between the embeddings. We show that our method not only out-performs unsupervised methods, but also supervised methods that train on known word translations.
We investigate segmenting and clustering speech into low-bitrate phone-like sequences without supervision. We specifically constrain pretrained self-supervised vector-quantized (VQ) neural networks so that blocks of contiguous feature vectors are ass igned to the same code, thereby giving a variable-rate segmentation of the speech into discrete units. Two segmentation methods are considered. In the first, features are greedily merged until a prespecified number of segments are reached. The second uses dynamic programming to optimize a squared error with a penalty term to encourage fewer but longer segments. We show that these VQ segmentation methods can be used without alteration across a wide range of tasks: unsupervised phone segmentation, ABX phone discrimination, same-different word discrimination, and as inputs to a symbolic word segmentation algorithm. The penalized dynamic programming method generally performs best. While performance on individual tasks is only comparable to the state-of-the-art in some cases, in all tasks a reasonable competing approach is outperformed at a substantially lower bitrate.
Acoustic word embeddings (AWEs) are fixed-dimensional representations of variable-length speech segments. For zero-resource languages where labelled data is not available, one AWE approach is to use unsupervised autoencoder-based recurrent models. An other recent approach is to use multilingual transfer: a supervised AWE model is trained on several well-resourced languages and then applied to an unseen zero-resource language. We consider how a recent contrastive learning loss can be used in both the purely unsupervised and multilingual transfer settings. Firstly, we show that terms from an unsupervised term discovery system can be used for contrastive self-supervision, resulting in improvements over previous unsupervised monolingual AWE models. Secondly, we consider how multilingual AWE models can be adapted to a specific zero-resource language using discovered terms. We find that self-supervised contrastive adaptation outperforms adapted multilingual correspondence autoencoder and Siamese AWE models, giving the best overall results in a word discrimination task on six zero-resource languages.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail able for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا