ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphology and enhanced star formation in a Cartwheel-like ring galaxy

127   0   0.0 ( 0 )
 نشر من قبل Florent Renaud
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use hydrodynamical simulations of a Cartwheel-like ring galaxy, modelled as a nearly head-on collision of a small companion with a larger disc galaxy, to probe the evolution of the gaseous structures and flows, and to explore the physical conditions setting the star formation activity. Star formation is first quenched by tides as the companion approaches, before being enhanced shortly after the collision. The ring ploughs the disc material as it radially extends, and almost simultaneously depletes its stellar and gaseous reservoir into the central region, through the spokes, and finally dissolve 200 Myr after the collision. Most of star formation first occurs in the ring before this activity is transferred to the spokes and then the nucleus. We thus propose that the location of star formation traces the dynamical stage of ring galaxies, and could help constrain their star formation histories. The ring hosts tidal compression associated with strong turbulence. This compression yields an azimuthal asymmetry, with maxima reached in the side furthest away from the nucleus, which matches the star formation activity distribution in our models and in observed ring systems. The interaction triggers the formation of star clusters significantly more massive than before the collision, but less numerous than in more classical galaxy interactions. The peculiar geometry of Cartwheel-like objects thus yields a star (cluster) formation activity comparable to other interacting objects, but with notable second order differences in the nature of turbulence, the enhancement of the star formation rate, and the number of massive clusters formed.



قيم البحث

اقرأ أيضاً

Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(J=1-0) observations are used to study the cold molecular ISM of the Cartwheel ring galaxy and its relation to HI and massive star formation (SF). CO moment maps find $(2.69pm0.05)times10^{9}$ M $_{odot}$ of H$_2$ associated with the inner ring (72%) and nucleus (28%) for a Galactic I(CO)-to-N(H2) conversion factor ($alpha_{rm CO}$). The spokes and disk are not detected. Analysis of the inner rings CO kinematics show it to be expanding ($V_{rm exp}=68.9pm4.9$ km s$^{-1}$) implying an $approx70$ Myr age. Stack averaging reveals CO emission in the starburst outer ring for the first time, but only where HI surface density ($Sigma_{rm HI}$) is high, representing $M_{rm H_2}=(7.5pm0.8)times10^{8}$ M$_{odot}$ for a metallicity appropriate $alpha_{rm CO}$, giving small $Sigma_{rm H_2}$ ($3.7$ M$_{odot}$ pc$^{-2}$), molecular fraction ($f_{rm mol}=0.10$), and H$_2$ depletion timescales ($tau_{rm mol} approx50-600$ Myr). Elsewhere in the outer ring $Sigma_{rm H_2}lesssim 2$ M$_{odot}$ pc$^{-2}$, $f_{rm mol}lesssim 0.1$ and $tau_{rm mol}lesssim 140-540$ Myr (all $3sigma$). The inner ring and nucleus are H$_2$-dominated and are consistent with local spiral SF laws. $Sigma_{rm SFR}$ in the outer ring appears independent of $Sigma_{rm H_2}$, $Sigma_{rm HI}$ or $Sigma_{rm HI+H_2}$. The ISMs long confinement in the robustly star forming rings of the Cartwheel and AM0644-741 may result in either a large diffuse H$_2$ component or an abundance of CO-faint low column density molecular clouds. The H$_2$ content of evolved starburst rings may therefore be substantially larger. Due to its lower $Sigma_{rm SFR}$ and age the Cartwheels inner ring has yet to reach this state. Alternately, the outer ring may trigger efficient SF in an HI-dominated ISM.
We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep HST photometry obtained with the Legacy ExtraGalactic UV Survey (LEGUS). We apply a contour-based map analysis t echnique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95% being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviors, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60% of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behavior in a time-scale of ~60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The agreement between the morphology of simulated and real galaxies, and the way the morphological types are distributed across gala xy scaling relations are important probes of our knowledge of galaxy formation physics. Here we propose an unsupervised deep learning approach to perform a stringent test of the fine morphological structure of galaxies coming from the Illustris and IllustrisTNG (TNG100 and TNG50) simulations against observations from a subsample of the Sloan Digital Sky Survey. Our framework is based on PixelCNN, an autoregressive model for image generation with an explicit likelihood. We adopt a strategy that combines the output of two PixelCNN networks in a metric that isolates the fine morphological details of galaxies from the sky background. We are able to emph{quantitatively} identify the improvements of IllustrisTNG, particularly in the high-resolution TNG50 run, over the original Illustris. However, we find that the fine details of galaxy structure are still different between observed and simulated galaxies. This difference is driven by small, more spheroidal, and quenched galaxies which are globally less accurate regardless of resolution and which have experienced little improvement between the three simulations explored. We speculate that this disagreement, that is less severe for quenched disky galaxies, may stem from a still too coarse numerical resolution, which struggles to properly capture the inner, dense regions of quenched spheroidal galaxies.
113 - R. D. Grouchy 2010
Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the ring star formation properties are related to the non-axisymmetric gravity potential in general. For this purpose, we obtained H{alpha} emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and H{alpha}+[N ii] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H ii regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q_g; however, if we consider all rings, a better correlation is found when local bar forcing at the radius of the ring, Q_r, is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.
We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z$leq$0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios $leq$4, projected separations r$_{mathrm{p}} leq$30 kpc and velocity separations $Delta$V$leq$300 km s$^{-1}$, and have been selected to exhibit enhanced specific star formation rates (sSFR). We calculate molecular gas (H$_{2}$) masses, assigning to each galaxy a physically motivated conversion factor $alpha_{mathrm{CO}}$, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS, Saintonge et al. 2017) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H$_{2}$ masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا