ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic acceleration in dust only Universe via energy-momentum powered gravity

57   0   0.0 ( 0 )
 نشر من قبل \\\"Ozg\\\"ur Akarsu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a modified theory of gravitation constructed by the addition of the term $f(T_{mu u}T^{mu u})$ to the Einstein-Hilbert action, and elaborate a particular case $f(T_{mu u}T^{mu u})=alpha(T_{mu u}T^{mu u})^{eta}$, where $alpha$ and $eta$ are real constants, dubbed as energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters $(alpha,eta)$ on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that $eta=0$ corresponds to the $Lambda$CDM model, whereas $eta eq 0$ leads to a $w$CDM-type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as $rhopropto a^{-3}$ with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the $Lambda$CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.



قيم البحث

اقرأ أيضاً

We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models emp loy Starobinskys term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.
169 - Luca Amendola 2020
We argue that the $Lambda$CDM tensions of the Hubble-Lemaitre expansion rate $H_0$ and the clustering normalization $sigma_8$ can be eased, at least in principle, by considering an interaction between dark energy and dark matter in such a way to indu ce a small and positive early effective equation of state and a weaker gravity. For a dark energy scalar field $phi$ interacting with dark matter through an exchange of both energy and momentum, we derive a general form of the Lagrangian allowing for the presence of scaling solutions. In a subclass of such interacting theories, we show the existence of a scaling $phi$-matter-dominated-era ($phi$MDE) which can potentially alleviate the $H_0$ tension by generating an effective high-redshift equation of state. We also study the evolution of perturbations for a model with $phi$MDE followed by cosmic acceleration and find that the effective gravitational coupling relevant to the linear growth of large-scale structures can be smaller than the Newton gravitational constant $G$ at low redshifts. The momentum exchange between dark energy and dark matter plays a crucial role for realizing weak gravity, while the energy transfer is also required for the existence of $phi$MDE.
It is shown that F(R)-modified gravitational theories lead to curvature oscillations in astrophysical systems with rising energy density. The frequency and the amplitude of such oscillations could be very high and would lead to noticeable production of energetic cosmic ray particles.
We studied bulk viscosity in the modified $f(Q,T)$ gravity theory formalism, where $Q$ represents the non-metricity and $T$ denotes the trace of energy-momentum tensor within a flat Friedmann-Lema^{i}tre-Robertson-Walker metric (FLRW). We consider th e effective equation of state, which includes a bulk viscosity term explicitly. We find the exact solutions relating to bulk viscosity by assuming a specific form of $f(Q,T)=alpha Q+beta T$, where $alpha$ and $beta$ are constants. Furthermore, we constrained our model with revised Hubble datasets consisting of 57 data points and newly published Pantheon samples with 1048 points to obtain the best fitting values of the model parameters. Our model is found to be in good agreement with observations. Furthermore, we analysed the cosmological behavior of the density parameter, the equation of state (EoS) parameter ($omega$), and the deceleration parameter ($q$). The universe appears to be evolving from a decelerated to an accelerated phase. The EoS parameter is further found to be in the quintessence phase, indicating that the universe is accelerating. We can deduce that the accumulation of bulk viscosity as effective dark energy is responsible for the current accelerated expansion of the universe.
In this paper, we study a class of higher derivative, non-local gravity which admits homogeneous and isotropic non-singular, bouncing universes in the absence of matter. At the linearized level, the theory propagates only a scalar degree of freedom, and no vector or tensor modes. The scalar can be made free from perturbative ghost instabilities, and has oscillatory and bounded evolution across the bounce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا