ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature Oscillations in Modified Gravity and High Energy Cosmic Rays

134   0   0.0 ( 0 )
 نشر من قبل Elena Arbuzova V.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that F(R)-modified gravitational theories lead to curvature oscillations in astrophysical systems with rising energy density. The frequency and the amplitude of such oscillations could be very high and would lead to noticeable production of energetic cosmic ray particles.

قيم البحث

اقرأ أيضاً

We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models emp loy Starobinskys term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been a huge theoretical and observational effort into improving our understanding of the Universe. The cosmological equations describing the dynamics of a homogeneous and isotropic Universe are systems of ordinary differential equations, and one of the most elegant ways these can be investigated is by casting them into the form of dynamical systems. This allows the use of powerful analytical and numerical methods to gain a quantitative understanding of the cosmological dynamics derived by the models under study. In this review we apply these techniques to cosmology. We begin with a brief introduction to dynamical systems, fixed points, linear stability theory, Lyapunov stability, centre manifold theory and more advanced topics relating to the global structure of the solutions. Using this machinery we then analyse a large number of cosmological models and show how the stability conditions allow them to be tightly constrained and even ruled out on purely theoretical grounds. We are also able to identify those models which deserve further in depth investigation through comparison with observational data. This review is a comprehensive and detailed study of dynamical systems applications to cosmological models focusing on the late-time behaviour of our Universe, and in particular on its accelerated expansion. In self contained sections we present a large number of models ranging from canonical and non-canonical scalar fields, interacting models and non-scalar field models through to modified gravity scenarios. Selected models are discussed in detail and interpreted in the context of late-time cosmology.
We explore the joint implications of ultrahigh energy cosmic ray (UHECR) source environments -- constrained by the spectrum and composition of UHECRs -- and the observed high energy astrophysical neutrino spectrum. Acceleration mechanisms producing p ower-law CR spectra $propto E^{-2}$ are compatible with UHECR data, if CRs at high rigidities are in the quasi-ballistic diffusion regime as they escape their source environment. Both gas- and photon-dominated source environments are able to account for UHECR observations, however photon-dominated sources do so with a higher degree of accuracy. However, gas-dominated sources are in tension with current neutrino constraints. Accurate measurement of the neutrino flux at $sim 10$ PeV will provide crucial information on the viability of gas-dominated sources, as well as whether diffusive shock acceleration is consistent with UHECR observations. We also show that UHECR sources are able to give a good fit to the high energy portion of the astrophysical neutrino spectrum, above $sim$ PeV. This common origin of UHECRs and high energy astrophysical neutrinos is natural if air shower data is interpreted with the textsc{Sibyll2.3c} hadronic interaction model, which gives the best-fit to UHECRs and astrophysical neutrinos in the same part of parameter space, but not for EPOS-LHC.
Gravitational theories differing from General Relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a screening mechanism is needed to suppress, on small scales, the fifth force driving the cosmological acceleration. We consider the simplest of these theories, i.e. a scalar-tensor theory with first-order derivative self-interactions, and study isolated (static and spherically symmetric) non-relativistic and relativistic stars. We produce screened solutions and use them as initial data for non-linear numerical evolutions in spherical symmetry. We find that these solutions are stable under large initial perturbations, as long as they do not cause gravitational collapse. When gravitational collapse is triggered, the characteristic speeds of the scalar evolution equation diverge, even before apparent black-hole or sound horizons form. This casts doubts on whether the dynamical evolution of screened stars may be predicted in these effective field theories.
We consider the effect of a logarithmic f(R) theory, motivated by the form of the one-loop effective action arising from gluons in curved spacetime, on the structure of relativistic stars. In addition to analysing the consistency constraints on the p otential of the scalar degree of freedom, we discuss the possibility of observational features arising from a fifth force in the vicinity of the neutron star surface. We find that the model exhibits a chameleon effect that completely suppresses the effect of the modification on scales exceeding a few radii, but close to the surface of the neutron star, the deviation from General Relativity can significantly affect the surface redshift that determines the shift in absorption (or emission) lines. We also use the method of perturbative constraints to solve the modified Tolman-Oppenheimer-Volkov equations for normal and self-bound neutron stars (quark stars).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا