ﻻ يوجد ملخص باللغة العربية
Beginning from the semiclassical Hamiltonian, the Fermi pressure and Bohm potential for the quantum hydrodynamics application (QHD) at finite temperature are consistently derived in the framework of the local density approximation with the first order density gradient correction. Previously known results are revised and improved with a clear description of the underlying approximations. A fully non-local Bohm potential, which goes beyond of all previous results and is linked to the electron polarization function in the random phase approximation, for the QHD model is presented. The dynamic QHD exchange correlation potential is introduced in the framework of local field corrections, and considered for the case of the relaxation time approximation. Finally, the range of applicability of the QHD is discussed.
This thesis investigates geometric approaches to quantum hydrodynamics (QHD) in order to develop applications in theoretical quantum chemistry. Based upon the momentum map geometric structure of QHD and the associated Lie-Poisson and Euler-Poincare
Surface plasmons (SP) in a semi-bounded quantum plasma with degenerate electrons (e.g., a metal) is considered, and some interesting consequences of electron Pauli blocking for the SP dispersion and temporal attenuation are discussed. In particular,
We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1$times$10$^4$-5.2$times$10$^8$ K) and densities (0.25-49 g/cm$^3$), and experimental shock Hugoniot data at unprecedented high pressures (5608$pm$
Semiconductor devices are strong competitors in the race for the development of quantum com-putational systems. In this work, we interface two semiconductor building blocks of different di-mensionality and with complementary properties: (1) a quantum
We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, w