ﻻ يوجد ملخص باللغة العربية
Semiconductor devices are strong competitors in the race for the development of quantum com-putational systems. In this work, we interface two semiconductor building blocks of different di-mensionality and with complementary properties: (1) a quantum dot hosting a single exciton andacting as a nearly ideal single-photon emitter and (2) a quantum well in a 2D microcavity sustain-ing polaritons, which are known for their strong interactions and unique hydrodynamics propertiesincluding ultrafast real-time monitoring of their propagation and phase-mapping. In the presentexperiment we can thus observe how the injected single particles propagate and evolve inside themicrocavity, giving rise to hydrodynamics features typical of macroscopic systems despite their in-trinsic genuine quantum nature. In the presence of a structural defect, we observe the celebratedquantum interference of a single particle that produces fringes reminiscent of a wave propagation.While this behaviour could be theoretically expected, our imaging of such an interference pattern,together with a measurement of antibunching, constitutes the first demonstration of spatial mappingof the self-interference of a single quantum particle hitting an obstacle.
Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed Generalized Hydrodyn
Exciton Mott physics in two-dimensional electron-hole (e-h) systems is studied in the quasiequilibrium, which is the crossovers or phase transitions between the insulating exciton gas and the metallic e-h plasma. By developing a self-consistent scree
The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics when a system is driven through a second-order quantum phase transition. However, for first-order quantum phase transitions, the Kibble-Zurek
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles
The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations r