ترغب بنشر مسار تعليمي؟ اضغط هنا

Pinning, Rotation, and Metastability of BiFeO$_3$ Cycloidal Domains in a Magnetic Field

46   0   0.0 ( 0 )
 نشر من قبل Randy Fishman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Randy S. Fishman




اسأل ChatGPT حول البحث

Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wavevectors q to the three-fold symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wavevectors rotate so that q rotates within the hexagonal plane normal to P away from the field orientation m. We show that the previously neglected three-fold anisotropy K3 restricts the wavevectors to lie along the three-fold axis in zero field. For m along a three-fold axis, the domain with q parallel to m remains metastable below Bc1 = 7 T. Due to the pinning of domains by non-magnetic impurities, the wavevectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque t = M x B along P exceeds a threshold value tpin. Since t =0 when m is perpendicular to q, the wavevectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wavevectors, as well as spectroscopic measurements with m along a three-fold axis.

قيم البحث

اقرأ أيضاً

79 - Randy S. Fishman 2013
Multiferroic BiFeO3 undergoes a transition from a distorted spiral phase to a G-type antiferromagnet above a critical field H_c that depends on the orientation m of the field. We show that H_c(m) has a maximum when oriented along a cubic diagonal par allel to the electric polarization P and a minimum in the equatorial plane normal to P when two magnetic domains with the highest critical fields are degenerate. The measured critical field along a cubic axis is about 19 T but H_c is predicted to vary by as much as 2.5 T above and below this value. The orientational dependence of H_c(m) is more complex than indicated by earlier work, which did not consider the competition between magnetic domains.
First-principles calculations, in combination with the four-state energy mapping method, are performed to extract the magnetic interaction parameters of multiferroic BiFeO$_3$. Such parameters include the symmetric exchange (SE) couplings and the Dzy aloshinskii-Moriya (DM) interactions up to second nearest neighbors, as well as the single ion anisotropy (SIA). All magnetic parameters are obtained not only for the $R3c$ structural ground state, but also for the $R3m$ and $Rbar{3}c$ phases in order to determine the effects of ferroelectricity and antiferrodistortion distortions, respectively, on these magnetic parameters. In particular, two different second-nearest neighbor couplings are identified and their origins are discussed in details. Moreover, Monte-Carlo (MC) simulations using a magnetic Hamiltonian incorporating these first-principles-derived interaction parameters are further performed. They result (i) not only in the accurate prediction of the spin-canted G-type antiferromagnetic structure and of the known magnetic cycloid propagating along a $<$1$bar{1}$0$>$ direction, as well as their unusual characteristics (such as a weak magnetization and spin-density-waves, respectively); (ii) but also in the finding of another cycloidal state of low-energy and that awaits to be experimentally confirmed. Turning on and off the different magnetic interaction parameters in the MC simulations also reveal the precise role of each of them on magnetism.
We report polarized neutron scattering and piezoresponse force microscopy studies of millimeter-sized single crystals of multiferroic BiFeO$_3$. The crystals, grown below the Curie temperature, consist of a single ferroelectric domain. Two unique ele ctric polarization directions, as well as the populations of equivalent spiral magnetic domains, can be switched reversibly by an electric field. A ferroelectric monodomain with a single-$q$ single-helicity spin spiral can be obtained. This level of control, so far unachievable in thin films, makes single-crystal BiFeO$_3$ a promising object for multiferroics research.
92 - Randy S. Fishman 2013
The spectroscopic modes of multiferroic BiFeO$_3$ provide detailed information about the very small anisotropy and Dzyaloshinskii-Moriya (DM) interactions responsible for the long-wavelength, distorted cycloid below $TN = 640$ K. A microscopic model that includes two DM interactions and easy-axis anisotropy predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field applied along a cubic axis. While only six modes are optically active in zero field, all modes at the cycloidal wavevector are activated by a magnetic field. The three magnetic domains of the cycloid are degenerate in zero field but one domain has lower energy than the other two in nonzero field. Measurements imply that the higher-energy domains are depopulated above about 6 T and have a maximum critical field of 16 T, below the critical field of 19 T for the lowest-energy domain. Despite the excellent agreement with the measured spectroscopic frequencies, some discrepancies with the measured spectroscopic intensities suggest that other weak interactions may be missing from the model.
91 - Randy S. Fishman 2017
Many years and great effort have been spent constructing the microscopic model for the room temperature multiferroic BiFeO3 However, earlier models implicitly assumed that the cycloidal wavevector q was confined to one of the three-fold symmetric axi s in the hexagonal plane normal to the electric polarization. Because recent measurements indicate that q can be rotated by a magnetic field, it is essential to properly treat the anisotropy that confines q at low fields. We show that the anisotropy energy $-K_3 S^6 sin^6 theta cos 6 phi $ confines the wavevectors q to the three-fold axis $phi =0$ and $+-2 pi/3$ within the hexagonal plane with $theta = pi /2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا