ﻻ يوجد ملخص باللغة العربية
Diamond lattices are sequences of recursively-defined graphs that provide a network of directed pathways between two fixed root nodes, $A$ and $B$. The construction recipe for diamond graphs depends on a branching number $bin mathbb{N}$ and a segmenting number $sin mathbb{N}$, for which a larger value of the ratio $s/b$ intuitively corresponds to more opportunities for intersections between two randomly chosen paths. By attaching i.i.d. random variables to the bonds of the graphs, I construct a random Gibbs measure on the set of directed paths by assigning each path an energy given by summing the random variables along the path. For the case $b=s$, I propose a scaling regime in which the temperature grows along with the number of hierarchical layers of the graphs, and the partition function (the normalization factor of the Gibbs measure) appears to converge in law. I prove that all of the positive integer moments of the partition function converge in this limiting regime. The motivation of this work is to prove a functional limit theorem that is analogous to a previous result obtained in the $b<s$ case.
We prove a distributional limit theorem conjectured in [Journal of Statistical Physics 174, No. 6, 1372-1403 (2019)] for partition functions defining models of directed polymers on diamond hierarchical graphs with disorder variables placed at the gra
In this paper in terms of the replica method we consider the high temperature limit of (2+1) directed polymers in a random potential and propose an approach which allows to compute the scaling exponent $theta$ of the free energy fluctuations as well
I discuss models for a continuum directed random polymer in a disordered environment in which the polymer lives on a fractal called the textit{diamond hierarchical lattice}, a self-similar metric space forming a network of interweaving pathways. This
We compute the fluctuation exponents for a solvable model of one-dimensional directed polymers in random environment in the intermediate regime. This regime corresponds to taking the inverse temperature to zero with the size of the system. The expone
We show that the partition function of the multi-layer semi-discrete directed polymer converges in the intermediate disorder regime to the partition function for the multi-layer continuum polymer introduced by OConnell and Warren. This verifies, modu