ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation exponents for directed polymers in the intermediate disorder regime

147   0   0.0 ( 0 )
 نشر من قبل Benedek Valko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the fluctuation exponents for a solvable model of one-dimensional directed polymers in random environment in the intermediate regime. This regime corresponds to taking the inverse temperature to zero with the size of the system. The exponents satisfy the KPZ scaling relation and coincide with physical predictions. In the critical case, we recover the fluctuation exponents of the Cole-Hopf solution of the KPZ equation in equilibrium and close to equilibrium.



قيم البحث

اقرأ أيضاً

68 - Mihai Nica 2016
We show that the partition function of the multi-layer semi-discrete directed polymer converges in the intermediate disorder regime to the partition function for the multi-layer continuum polymer introduced by OConnell and Warren. This verifies, modu lo a previously hidden constant, an outstanding conjecture proposed by Corwin and Hammond. A consequence is the identification of the KPZ line ensemble as logarithms of ratios of consecutive layers of the continuum partition function. Other properties of the continuum partition function, such as continuity, strict positivity and contour integral formulas to compute mixed moments, are also identified from this convergence result.
We prove that the random variable $ct=argmax_{tinrr}{aip(t)-t^2}$ has tails which decay like $e^{-ct^3}$. The distribution of $ct$ is a universal distribution which governs the rescaled endpoint of directed polymers in 1+1 dimensions for large time or temperature.
We study asymptotics of the free energy for the directed polymer in random environment. The polymer is allowed to make unbounded jumps and the environment is given by Bernoulli variables. We first establish the existence and continuity of the free en ergy including the negative infinity value of the coupling constant $beta$. Our proof of existence at $beta=-infty$ differs from existing ones in that it avoids the direct use of subadditivity. Secondly, we identify the asymptotics of the free energy at $beta=-infty$ in the limit of the success probability of the Bernoulli variables tending to one. It is described by using the so-called time constant of a certain directed first passage percolation. Our proof relies on a certain continuity property of the time constant, which is of independent interest.
64 - Jeremy Clark 2017
Diamond lattices are sequences of recursively-defined graphs that provide a network of directed pathways between two fixed root nodes, $A$ and $B$. The construction recipe for diamond graphs depends on a branching number $bin mathbb{N}$ and a segment ing number $sin mathbb{N}$, for which a larger value of the ratio $s/b$ intuitively corresponds to more opportunities for intersections between two randomly chosen paths. By attaching i.i.d. random variables to the bonds of the graphs, I construct a random Gibbs measure on the set of directed paths by assigning each path an energy given by summing the random variables along the path. For the case $b=s$, I propose a scaling regime in which the temperature grows along with the number of hierarchical layers of the graphs, and the partition function (the normalization factor of the Gibbs measure) appears to converge in law. I prove that all of the positive integer moments of the partition function converge in this limiting regime. The motivation of this work is to prove a functional limit theorem that is analogous to a previous result obtained in the $b<s$ case.
In this note, we show that the Lyapunov exponents of mixed products of random truncated Haar unitary and complex Ginibre matrices are asymptotically given by equally spaced `picket-fence statistics. We discuss how these statistics should originate fr om the connection between random matrix products and multiplicative Brownian motion on $operatorname{GL}_n(mathbb{C})$, analogous to the connection between discrete random walks and ordinary Brownian motion. Our methods are based on contour integral formulas for products of classical matrix ensembles from integrable probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا