ﻻ يوجد ملخص باللغة العربية
Speech enhancement (SE) aims to reduce noise in speech signals. Most SE techniques focus on addressing audio information only. In this work, inspired by multimodal learning, which utilizes data from different modalities, and the recent success of convolutional neural networks (CNNs) in SE, we propose an audio-visual deep CNN (AVDCNN) SE model, which incorporates audio and visual streams into a unified network model. In the proposed AVDCNN SE model, audio and visual data are first processed using individual CNNs, and then, fused into a joint network to generate enhanced speech at the output layer. The AVDCNN model is trained in an end-to-end manner, and parameters are jointly learned through back-propagation. We evaluate enhanced speech using five objective criteria. Results show that the AVDCNN yields notably better performance, compared with an audio-only CNN-based SE model and two conventional SE approaches, confirming the effectiveness of integrating visual information into the SE process.
Speech enhancement (SE) aims to reduce noise in speech signals. Most SE techniques focus only on addressing audio information. In this work, inspired by multimodal learning, which utilizes data from different modalities, and the recent success of con
Attempts to develop speech enhancement algorithms with improved speech intelligibility for cochlear implant (CI) users have met with limited success. To improve speech enhancement methods for CI users, we propose to perform speech enhancement in a co
Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to per
Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts
Convolutional Neural Networks (CNN) have been used in Automatic Speech Recognition (ASR) to learn representations directly from the raw signal instead of hand-crafted acoustic features, providing a richer and lossless input signal. Recent researches