ترغب بنشر مسار تعليمي؟ اضغط هنا

Mini-EUSO: A high resolution detector for the study of terrestrial and cosmic UV emission from the International Space Station

53   0   0.0 ( 0 )
 نشر من قبل Francesca Capel
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mini-EUSO instrument is a UV telescope to be placed inside the International Space Station (ISS), looking down on the Earth from a nadir-facing window in the Russian Zvezda module. Mini-EUSO will map the earth in the UV range (300 - 400 nm) with a spatial resolution of 6.11km and a temporal resolution of 2.5 $mu$s, offering the opportunity to study a variety of atmospheric events such as transient luminous events (TLEs) and meteors, as well as searching for strange quark matter and bioluminescence. Furthermore, Mini-EUSO will be used to detect space debris to verify the possibility of using a EUSO-class telescope in combination with a high energy laser for space debris remediation. The high-resolution mapping of the UV emissions from Earth orbit allows Mini-EUSO to serve as a pathfinder for the study of Extreme Energy Cosmic Rays (EECRs) from space by the JEM-EUSO collaboration.



قيم البحث

اقرأ أيضاً

Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra Hi gh Energy Cosmic Rays (UHECR) above $10^{21}$ eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view ($44^{circ}$), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8x8 SiPM imaging array.
Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as KEUSO and POEMMA, devoted primarily to the observation of Ultra High Energy Cosmic Rays from space. Mini-EUSO is capable of observing Extensive Air Showers generated by Ultra-High Energy Cosmic Rays with an energy above 10^21 eV and detect artificial showers generated with lasers from the ground. Other main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. Mini-EUSO will map the night-time Earth in the UV range (290 - 430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 microseconds, through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on August 22, 2019 from the Baikonur cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44 degrees. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. In this paper we describe the detector and present the various phenomena observed in the first months of operations.
The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite on the International Space Station (ISS) for measurements of lightning, Transient Luminous Events (TLEs) and Terrestrial Gamma-ray Flashes (TGFs). Developed in the framework of t he European Space Agency (ESA), it was launched April 2, 2018 on the SpaceX CRS-14 flight to the ISS. ASIM was mounted on an external platform of ESAs Columbus module eleven days later and is planned to take measurements during minimum 3 years.
The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a k ey role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented.
72 - Y. Asaoka , Y. Akaike , Y. Komiya 2017
In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began tocollect data. CALET will measure the cos mic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا