ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Lorentz invariance violation using the Crab Pulsar emission observed up to TeV energies by MAGIC

119   0   0.0 ( 0 )
 نشر من قبل Markus Gaug
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the MAGIC collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent~CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of $E_{mathrm{QG}_1} > 5.5cdot 10^{17}$GeV ($4.5cdot 10^{17}$GeV) for a linear, and $E_{mathrm{QG}_2} > 5.9cdot 10^{10}$GeV ($5.3cdot 10^{10}$GeV) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, found to worsen the statistical limits by about 36--42%. Our constraints would have resulted much more competitive if the intrinsic pulse shape of the pulsar between 200GeV and 400GeV was understood in sufficient detail and allowed inclusion of events well below 400GeV.



قيم البحث

اقرأ أيضاً

Aims: To investigate the extension of the very-high-energy spectral tail of the Crab pulsar at energies above 400 GeV. Methods: We analyzed $sim$320 hours of good quality data of Crab with the MAGIC telescope, obtained from February 2007 until April 2014. Results: We report the most energetic pulsed emission ever detected from the Crab pulsar reaching up to 1.5 TeV. The pulse profile shows two narrow peaks synchronized with the ones measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70 GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10 GeV by the Large Area Telescope (LAT) on board of the Fermi satellite. When making a joint fit of the LAT and MAGIC data, above 10 GeV, the photon indices of the spectra differ by 0.5$pm$0.1. Conclusions: We measured with the MAGIC telescopes the most energetic pulsed photons from a pulsar to date. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least $5times 10^6$. These results strongly suggest IC scattering off low energy photons as the emission mechanism and a gamma-ray production region in the vicinity of the light cylinder.
Due to the high energies and long distances involved, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz Invariance Violation (LIV). Superluminal LIV enables the decay of photons at high energy over relativ ely short distances, giving astrophysical spectra which have a hard cutoff above this energy. The High Altitude Water Cherenkov (HAWC) observatory is the most sensitive currently-operating gamma-ray observatory in the world above 10 TeV. Together with the recent development of an energy-reconstruction algorithm for HAWC using an artificial neural network, HAWC can make detailed measurements of gamma-ray energies above 100 TeV. With these observations, HAWC can limit the LIV energy scale greater than $10^{31}$ eV, over 800 times the Planck energy scale. This limit on LIV is over 60 times more constraining than the best previous value for $rm E_{LIV}^{(1)}$.
Aims: We aim to measure the Crab Nebula gamma-ray spectral energy distribution in the ~100 TeV energy domain and test the validity of existing leptonic emission models at these high energies. Methods: We use the novel very large zenith angle observ ations with the MAGIC telescope system to increase the collection area above 10 TeV. We also develop an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording of optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements. Results: We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only ~56 hr of observations, we detect the gamma-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV gamma-ray signal.
On January 14, 2019, the Major Atmospheric Gamma Imaging Cherenkov telescopes detected GRB 190114C above 0.2 TeV, recording the most energetic photons ever observed from a gamma-ray burst. We use this unique observation to probe an energy dependence of the speed of light in vacuo for photons as predicted by several quantum gravity models. Based on a set of assumptions on the possible intrinsic spectral and temporal evolution, we obtain competitive lower limits on the quadratic leading order of speed of light modification.
Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models where gamma-ray production is dominated by ha dronic mechanisms, and has been named the TeV excess. We show that TeV emission from pulsars naturally explains this excess. In particular, recent observations have detected TeV halos surrounding pulsars that are either nearby or particularly luminous. Here, we show that the full population of Milky Way pulsars will produce diffuse TeV emission concentrated along the Milky Way plane. The total gamma-ray flux from TeV halos is expected to exceed the hadronic gamma-ray flux at energies above ~500 GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. If this scenario is common to all galaxies, it will decrease the contribution of star-forming galaxies to the IceCube neutrino flux. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا