ﻻ يوجد ملخص باللغة العربية
Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models where gamma-ray production is dominated by hadronic mechanisms, and has been named the TeV excess. We show that TeV emission from pulsars naturally explains this excess. In particular, recent observations have detected TeV halos surrounding pulsars that are either nearby or particularly luminous. Here, we show that the full population of Milky Way pulsars will produce diffuse TeV emission concentrated along the Milky Way plane. The total gamma-ray flux from TeV halos is expected to exceed the hadronic gamma-ray flux at energies above ~500 GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. If this scenario is common to all galaxies, it will decrease the contribution of star-forming galaxies to the IceCube neutrino flux. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.
Using data from the HAWC gamma-ray Telescope, we have studied a sample of 37 millisecond pulsars (MSPs), selected for their spindown power and proximity. From among these MSP, we have identified four which favor the presence of very high-energy gamma
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL c
We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different e
Pulsar winds interacting with sources of external pressure are well-established as efficient and prolific TeV accelerators in our Galaxy. Yet, enabled by observations from Fermi-LAT, a growing class of non-accreting pulsars in binaries has emerged an