ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar TeV Halos Explain the TeV Excess Observed by Milagro

62   0   0.0 ( 0 )
 نشر من قبل Tim Linden
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models where gamma-ray production is dominated by hadronic mechanisms, and has been named the TeV excess. We show that TeV emission from pulsars naturally explains this excess. In particular, recent observations have detected TeV halos surrounding pulsars that are either nearby or particularly luminous. Here, we show that the full population of Milky Way pulsars will produce diffuse TeV emission concentrated along the Milky Way plane. The total gamma-ray flux from TeV halos is expected to exceed the hadronic gamma-ray flux at energies above ~500 GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. If this scenario is common to all galaxies, it will decrease the contribution of star-forming galaxies to the IceCube neutrino flux. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

قيم البحث

اقرأ أيضاً

114 - Dan Hooper , Tim Linden 2021
Using data from the HAWC gamma-ray Telescope, we have studied a sample of 37 millisecond pulsars (MSPs), selected for their spindown power and proximity. From among these MSP, we have identified four which favor the presence of very high-energy gamma -ray emission at a level of $(2Delta ln mathcal{L})^{1/2} ge 2.5$. Adopting a correlation between the spindown power and gamma-ray luminosity of each pulsar, we performed a stacked likelihood analysis of these 37 MSPs, finding that the data supports the conclusion that these sources emit very high-energy gamma-rays at a level of $(2Delta ln mathcal{L})^{1/2} = 4.24$. Among sets of randomly selected sky locations within HAWCs field-of-view, less than 1% of such realizations yielded such high statistical significance. Our analysis suggests that MSPs produce very high-energy gamma-ray emission with a similar efficiency to that observed from the Geminga TeV-halo, $eta_{rm MSP} = (0.39-1.08) times eta_{rm Geminga}$. This conclusion poses a significant challenge for pulsar interpretations of the Galactic Center gamma-ray excess, as it suggests that any population of MSPs potentially capable of producing the GeV excess would also produce TeV-scale emission in excess of that observed by HESS from this region. Future observations by CTA will be able to substantially clarify this situation.
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL c atalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.
We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly-optimized gamma-hadron separation and utilizes the full 8-year Milagro dataset. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10-50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang Pulsar Wind Nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different e nergies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the MAGIC collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent~CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of $E_{mathrm{QG}_1} > 5.5cdot 10^{17}$GeV ($4.5cdot 10^{17}$GeV) for a linear, and $E_{mathrm{QG}_2} > 5.9cdot 10^{10}$GeV ($5.3cdot 10^{10}$GeV) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, found to worsen the statistical limits by about 36--42%. Our constraints would have resulted much more competitive if the intrinsic pulse shape of the pulsar between 200GeV and 400GeV was understood in sufficient detail and allowed inclusion of events well below 400GeV.
Pulsar winds interacting with sources of external pressure are well-established as efficient and prolific TeV accelerators in our Galaxy. Yet, enabled by observations from Fermi-LAT, a growing class of non-accreting pulsars in binaries has emerged an d these are likely to become apparent as TeV emitters in the CTA era. This class consists of the black widows and redbacks, binaries in which a millisecond pulsar interacts with its low-mass companion. In such systems, an intrabinary shock can form as a site of particle acceleration and associated nonthermal emission. We motivate why these sources are particularly interesting for understanding pulsar winds. We also describe our new multizone code which models the X-ray and gamma-ray synchrotron and inverse Compton spectral components for select spider binaries, including diffusion, convection, and radiative energy losses in an axially symmetric, steady-state approach. This new multizone code simultaneously yields energy-dependent light curves and orbital-phase-resolved spectra. It also better constrains the multiplicity of electron/positron pairs that have been accelerated up to TeV energies and are necessary to power orbitally-modulated synchrotron emission components between the X-rays and MeV/GeV bands potentially observed in some systems. This affords a more robust prediction of the expected high-energy and VHE gamma-ray flux. Nearby MSPs with hot or flaring companions may be promising targets for CTA, and it is possible that spider binaries could contribute to the observed AMS-02 energetic positron excess.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا