ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser-plasma accelerator based single-cycle attosecond undulator source

130   0   0.0 ( 0 )
 نشر من قبل Zoltan Tibai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to~60~nJ energy and 90 to~400~attosecond duration in the 30 to 120~nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

قيم البحث

اقرأ أيضاً

We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a las er-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are: (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses producesnot only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0~1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile anomalous far-field divergence of the retro-reflected light demonstrates relativistic denting of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75 to 200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency ~6e12 exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.
Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particul arly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 130 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV/m. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.
A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at a proper time, only one return of the EWP to the parent ion is selected to effectively contribute to the harmonics, then an isolated two-cycle 130-as pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an isolated single-cycle attosecond pulse with a duration less than 100 as seems achievable. In addition, the contribution of the quantum trajectories can be selected by adjusting the delay between the IR and UV fields. Using this method, the harmonic and attosecond pulse yields are efficiently enhanced in contrast to the scheme [G. Sansone {it et al.}, Science {bf314}, 443 (2006)] using a few-cycle IR pulse in combination with the polarization gating technique.
The design of the positron source for the International Linear Collider (ILC) is still under consideration. The baseline design plans to use the electron beam for the positron production before it goes to the IP. The high-energy electrons pass a long helical undulator and generate an intense circularly polarized photon beam which hits a thin conversion target to produce $e^+e^-$ pairs. The resulting positron beam is longitudinally polarized which provides an important benefit for precision physics analyses. In this paper the status of the design studies is presented with focus on ILC250. In particular, the target design and cooling as well as issues of the optical matching device are important for the positron yield. Some possibilities to optimize the system are discussed.
C. B. Schroeder, E. Esarey, C. Benedetti, and W. P. Leemans {Phys. Rev. ST Accel. Beams 13, 101301 (2010) and 15, 051301 (2012)} have proposed a set of parameters for a TeV-scale collider based on plasma wake field accelerator principles. In particul ar, it is suggested that the luminosities greater than 10^34 cm-2s-1 are attainable for an electron-positron collider. In this comment we dispute this set of parameters on the basis of first principles. The interactions of accelerating beam with plasma impose fundamental limitations on beam properties and, thus, on attainable luminosity values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا