ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical critical exponents in driven-dissipative quantum systems

112   0   0.0 ( 0 )
 نشر من قبل Paolo Comaron
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phase-ordering of parametrically and incoherently driven microcavity polaritons after an infinitely rapid quench across the critical region. We confirm that the system, despite its driven-dissipative nature, fulfils dynamical scaling hypothesis for both driving schemes by exhibiting self-similar patterns for the two-point correlator at late times of the phase ordering. We show that polaritons are characterised by the dynamical critical exponent z ~ 2 with topological defects playing a fundamental role in the dynamics, giving logarithmic corrections both to the power-law decay of the number of vortices and to the associated growth of the characteristic length-scale.



قيم البحث

اقرأ أيضاً

We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical crit ical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.
We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which i s the sum of the exponents of the operators involved in the correlation functions: a hard cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a soft cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching transition in the driven-dissipative Bose-Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.
We study the effects of dissipative boundaries in many-body systems at continuous quantum transitions, when the parameters of the Hamiltonian driving the unitary dynamics are close to their critical values. As paradigmatic models, we consider fermion ic wires subject to dissipative interactions at the boundaries, associated with pumping or loss of particles. They are induced by couplings with a Markovian baths, so that the evolution of the system density matrix can be described by a Lindblad master equation. We study the quantum evolution arising from variations of the Hamiltonian and dissipation parameters, starting at t=0 from the ground state of the critical Hamiltonian. Two different dynamic regimes emerge: (i) an early-time regime for times t ~ L, where the competition between coherent and incoherent drivings develops a dynamic finite-size scaling, obtained by extending the scaling framework describing the coherent critical dynamics of the closed system, to allow for the boundary dissipation; (ii) a large-time regime for t ~ L^3 whose dynamic scaling describes the late quantum evolution leading to the t->infty stationary states.
We show that ideal Bose-Einstein condensation (BEC) in $d = 3$ dimensions is a non-classical critical second order phase transition with exponents $alpha = -1$, $beta = 1$, $gamma = 1$, $delta = 2$, $eta = 1$ and $ u = 1$, obeying all the scaling equ alities. These results are found with no approximations or assumptions. The previous exponents are a critical universality class on its own, different from the so-far accepted notion that BEC belongs to the Spherical Model universality class.
Slow variations (quenches) of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench r ate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate $delta$ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, after crossing the critical point the system tends to reabsorb the defects formed during the first part of the ramp: the number of excitations exhibits a crossover behavior as a function of $delta$ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا