ﻻ يوجد ملخص باللغة العربية
We present multi-wavelength analysis for four bipolar bubbles (G045.386-0.726, G049.998-0.125, G050.489+0.993, and G051.610-0.357) to probe the structure and dynamics of their surrounding gas. The 12CO J=1-0, 13CO J=1-0 and C18O J=1-0 observations are made with the Purple Mountain Observation (PMO) 13.7 m radio telescope. For the four bipolar bubbles, the bright 8.0 um emission shows the bipolar structure. Each bipolar bubble is associated with an HII region. From CO observations we find that G045.386-0.726 is composed of two bubbles with different distances, not a bipolar bubble. Each of G049.998-0.125 and G051.610-0.357 is associated with a filament. The filaments in CO emission divide G049.998-0.125 and G051.610-0.357 into two lobes. We suggest that the exciting stars of both G049.998-0.125 and G051.610-0.357 form in a sheet-like structure clouds. Furthermore, G050.489+0.993 is associated with a clump, which shows a triangle-like shape with a steep integrated intensity gradient towards the two lobes of G050.489+0.993. We suggest that the two lobes of G050.489+0.993 have simultaneously expanded into the clump.
We present a study on the molecular gas towards a bright-rimmed cloud located to the north of the infrared dust bubble N30. Using the emission from the 12CO, 13CO, and C18O J=3-2 line, together with infrared and radio continuum data, we characterized
We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five
We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 $mu$m, are ideal regions to investigate the effect of the expansion of the HII region on its surroundings eventual
We present Submillimeter Array (SMA) 1.35 mm subarcsecond angular resolution observations toward the LkH{alpha} 234 intermediate-mass star-forming region. The dust emission arises from a filamentary structure of $sim$5 arcsec ($sim$4500 au) enclosing
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified,