ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Lines of 13 Galactic Infrared Bubble Regions

213   0   0.0 ( 0 )
 نشر من قبل Qingzeng Yan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0), C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS, were used for comparison. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four of them have outflow activities. Three bubbles display ultra-compact HII regions at their borders, and one of them is probably responsible for its outflow. In total, only six bubbles show star formation activities in the vicinity, and we suggest that star formation processes might have been triggered.



قيم البحث

اقرأ أيضاً

We present a detailed characterization of the population of compact radio-continuum sources in W51 A using subarcsecond VLA and ALMA observations. We analyzed their 2-cm continuum, the recombination lines (RLs) H77$alpha$ and H30$alpha$, and the line s of $rm H_{2}CO(3_{0,3}-2_{0,2})$, $rm H_{2}CO(3_{2,1}-2_{2,0})$, and $rm SO(6_{5}-5_{4})$. We derive diameters for 10/20 sources in the range $D sim 10^{-3}$ to $sim 10^{-2}$ pc, thus placing them in the regime of hypercompact HII regions (HC HIIs). Their continuum-derived electron densities are in the range $n_{rm e} sim 10^4$ to $10^5$ cm$^{-3}$, lower than typically considered for HC HIIs. We combined the RL measurements and independently derived $n_{rm e}$, finding the same range of values but significant offsets for individual measurements between the two methods. We found that most of the sources in our sample are ionized by early B-type stars, and a comparison of $n_{rm e}$ vs $D$ shows that they follow the inverse relation previously derived for ultracompact (UC) and compact HIIs. When determined, the ionized-gas kinematics is always (7/7) indicative of outflow. Similarly, 5 and 3 out of the 8 HC HIIs still embedded in a compact core show evidence for expansion and infall motions in the molecular gas, respectively. We hypothesize that there could be two different types of $hypercompact$ ($D< 0.05$ pc) HII regions: those that essentially are smaller, expanding UC HIIs; and those that are also $hyperdense$ ($n_{rm e} > 10^6$ cm$^{-3}$), probably associated with O-type stars in a specific stage of their formation or early life.
78 - K. Wiersema , A. Togi , D. Watson 2018
Molecular species, most frequently H_2, are present in a small, but growing, number of gamma-ray burst (GRB) afterglow spectra at redshifts z~2-3, detected through their rest-frame UV absorption lines. In rare cases, lines of vibrationally excited st ates of H_2 can be detected in the same spectra. The connection between afterglow line-of-sight absorption properties of molecular (and atomic) gas, and the observed behaviour in emission of similar sources at low redshift, is an important test of the suitability of GRB afterglows as general probes of conditions in star formation regions at high redshift. Recently, emission lines of carbon monoxide have been detected in a small sample of GRB host galaxies, at sub-mm wavelengths, but no searches for H_2 in emission have been reported yet. In this paper we perform an exploratory search for rest-frame K band rotation-vibrational transitions of H_2 in emission, observable only in the lowest redshift GRB hosts (z<0.22). Searching the data of four host galaxies, we detect a single significant rotation-vibrational H_2 line candidate, in the host of GRB 031203. Re-analysis of Spitzer mid-infrared spectra of the same GRB host gives a single low significance rotational line candidate. The (limits on) line flux ratios are consistent with those of blue compact dwarf galaxies in the literature. New instrumentation, in particular on the JWST and the ELT, can facilitate a major increase in our understanding of the H_2 properties of nearby GRB hosts, and the relation to H_2 absorption in GRBs at higher redshift.
We present multi-wavelength analysis for four bipolar bubbles (G045.386-0.726, G049.998-0.125, G050.489+0.993, and G051.610-0.357) to probe the structure and dynamics of their surrounding gas. The 12CO J=1-0, 13CO J=1-0 and C18O J=1-0 observations ar e made with the Purple Mountain Observation (PMO) 13.7 m radio telescope. For the four bipolar bubbles, the bright 8.0 um emission shows the bipolar structure. Each bipolar bubble is associated with an HII region. From CO observations we find that G045.386-0.726 is composed of two bubbles with different distances, not a bipolar bubble. Each of G049.998-0.125 and G051.610-0.357 is associated with a filament. The filaments in CO emission divide G049.998-0.125 and G051.610-0.357 into two lobes. We suggest that the exciting stars of both G049.998-0.125 and G051.610-0.357 form in a sheet-like structure clouds. Furthermore, G050.489+0.993 is associated with a clump, which shows a triangle-like shape with a steep integrated intensity gradient towards the two lobes of G050.489+0.993. We suggest that the two lobes of G050.489+0.993 have simultaneously expanded into the clump.
94 - Fengwei Xu , Yuefang Wu , Tie Liu 2021
Gas at high Galactic latitude is a relatively little-noticed component of the interstellar medium. In an effort to address this, forty-one Planck Galactic Cold Clumps at high Galactic latitude (HGal; $|b|>25^{circ}$) were observed in $^{12}$CO, $^{13 }$CO and C$^{18}$O J=1-0 lines, using the Purple Mountain Observatory 13.7-m telescope. $^{12}$CO (1-0) and $^{13}$CO (1-0) emission was detected in all clumps while C$^{18}$O (1-0) emission was only seen in sixteen clumps. The highest and average latitudes are $71.4^{circ}$ and $37.8^{circ}$, respectively. Fifty-one velocity components were obtained and then each was identified as a single clump. Thirty-three clumps were further mapped at 1$^prime$ resolution and 54 dense cores were extracted. Among dense cores, the average excitation temperature $T_{mathrm{ex}}$ of $^{12}$CO is 10.3 K. The average line widths of thermal and non-thermal velocity dispersions are $0.19$ km s$^{-1}$ and $0.46$ km s$^{-1}$ respectively, suggesting that these cores are dominated by turbulence. Distances of the HGal clumps given by Gaia dust reddening are about $120-360$ pc. The ratio of $X_{13}$/$X_{18}$ is significantly higher than that in the solar neighbourhood, implying that HGal gas has a different star formation history compared to the gas in the Galactic disk. HGal cores with sizes from $0.01-0.1$ pc show no notable Larsons relation and the turbulence remains supersonic down to a scale of slightly below $0.1$ pc. None of the HGal cores which bear masses from 0.01-1 $M_{odot}$ are gravitationally bound and all appear to be confined by outer pressure.
We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on t he structure, dynamics and expansion laws of these regions. Once a massive star forms in our highly structured clouds, its ionising radiation eventually stops the accretion (through filaments) toward the massive star-forming regions. The new over-pressured H,{ ormalsize II} regions push away the dense gas, thus disrupting the more massive collapse centres. Also, because of the complex density structure in the cloud, the H,{ ormalsize II} regions expand in a hybrid manner: they virtually do not expand toward the densest regions (cores), while they expand according to the classical analytical result towards the rest of the cloud, and in an accelerated way, as a blister region, towards the diffuse medium. Thus, the ionised regions grow anisotropically, and the ionising stars generally appear off-centre of the regions. Finally, we find that the hypotheses assumed in standard H,{ ormalsize II}-region expansion models (fully embedded region, blister-type, or expansion in a density gradient) apply simultaneously in different parts of our simulated H,{ ormalsize II} regions, producing a net expansion law ($R propto t^alpha$, with $alpha$ in the range of 0.93-1.47 and a mean value of $1.2 pm 0.17$) that differs from any of those of the standard models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا