ﻻ يوجد ملخص باللغة العربية
The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural Networks (CNNs). Under this framework, the computation of the forward pass in a CNN is equivalent to a pursuit algorithm aiming to estimate the nested sparse representation vectors -- or feature maps -- from a given input signal. Despite having served as a pivotal connection between CNNs and sparse modeling, a deeper understanding of the ML-CSC is still lacking: there are no pursuit algorithms that can serve this model exactly, nor are there conditions to guarantee a non-empty model. While one can easily obtain signals that approximately satisfy the ML-CSC constraints, it remains unclear how to simply sample from the model and, more importantly, how one can train the convolutional filters from real data. In this work, we propose a sound pursuit algorithm for the ML-CSC model by adopting a projection approach. We provide new and improved bounds on the stability of the solution of such pursuit and we analyze different practical alternatives to implement this in practice. We show that the training of the filters is essential to allow for non-trivial signals in the model, and we derive an online algorithm to learn the dictionaries from real data, effectively resulting in cascaded sparse convolutional layers. Last, but not least, we demonstrate the applicability of the ML-CSC model for several applications in an unsupervised setting, providing competitive results. Our work represents a bridge between matrix factorization, sparse dictionary learning and sparse auto-encoders, and we analyze these connections in detail.
We address the multi-focus image fusion problem, where multiple images captured with different focal settings are to be fused into an all-in-focus image of higher quality. Algorithms for this problem necessarily admit the source image characteristics
The Residual Quantization (RQ) framework is revisited where the quantization distortion is being successively reduced in multi-layers. Inspired by the reverse-water-filling paradigm in rate-distortion theory, an efficient regularization on the varian
Convolutional dictionary learning (CDL), the problem of estimating shift-invariant templates from data, is typically conducted in the absence of a prior/structure on the templates. In data-scarce or low signal-to-noise ratio (SNR) regimes, which have
Parsimonious representations are ubiquitous in modeling and processing information. Motivated by the recent Multi-Layer Convolutional Sparse Coding (ML-CSC) model, we herein generalize the traditional Basis Pursuit problem to a multi-layer setting, i
In this paper, we propose a novel information theoretic framework for dictionary learning (DL) and sparse coding (SC) on a statistical manifold (the manifold of probability distributions). Unlike the traditional DL and SC framework, our new formulati