ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

88   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.



قيم البحث

اقرأ أيضاً

The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two dimensional heterostructure devices. The nature of the ba nd gap (direct or indirect) for bulk, few and single layer forms of ReS$_2$ is of particular interest, due to its comparatively weak inter-planar interaction. However, the degree of inter-layer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS$_2$ using high resolution angle resolved photoemission spectroscopy (ARPES). We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 $m_e$) than along them (1.6 $m_e$), in good agreement with density functional theory calculations. An appreciable inter-plane interaction results in an experimentally-measured difference of ~100-200 meV between the valence band maxima at the Z point (0,0,1/2) and the $Gamma$ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at $Gamma$, implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the direct or indirect gap nature of this material.
We studied the electronic structure of PtPb$_{4}$ using laser angle-resolved photoemission spectroscopy(ARPES) and density functional theory(DFT) calculations. This material is closely related to PtSn$_{4}$, which exhibits exotic topological properti es such as Dirac node arcs. Fermi surface(FS) of PtPb$_{4}$ consists of two electron pockets at the center of the Brillouin zone(BZ) and several hole pockets around the zone boundaries. Our ARPES data reveals significant Rashba splitting at the $Gamma$ point in agreement with DFT calculations. The presence of Rashba splitting may render this material of potential interest for spintronic applications.
Performing time and angle resolved photoemission spectroscopy (tr-ARPES) at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still r equire large pulse energies (hundreds of $mu$J to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of $5times10^{10}$ photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 $mu$J. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe$_3$. This novel setup offers opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.
Strong electron correlations in rare earth hexaborides can give rise to a variety of interesting phenomena like ferromagnetism, Kondo hybridization, mixed valence, superconductivity and possibly topological characteristics. The theoretical prediction of topological properties in SmB$_{6}$ and YbB$_{6}$, has rekindled the scientific interest in the rare earth hexaborides, and high-resolution ARPES has been playing a major role in the debate. The electronic band structure of the hexaborides contains the key to understand the origin of the different phenomena observed, and much can be learned by comparing the experimental data from different rare earth hexaborides. We have performed high-resolution ARPES on the (001) surfaces of YbB$_{6}$, CeB$_{6}$ and SmB$_{6}$. On the most basic level, the data show that the differences in the valence of the rare earth element are reflected in the experimental electronic band structure primarily as a rigid shift of the energy position of the metal 5$textit{d}$ states with respect to the Fermi level. Although the overall shape of the $textit{d}$-derived Fermi surface contours remains the same, we report differences in the dimensionality of these states between the compounds studied. Moreover, the spectroscopic fingerprint of the 4$textit{f}$ states also reveals considerable differences that are related to their coherence and the strength of the $textit{d}$-$textit{f}$ hybridization. For the SmB$_6$ case, we use ARPES in combination with STM imaging and electron diffraction to reveal time dependent changes in the structural symmetry of the highly debated SmB$_{6}$(001) surface. All in all, our study highlights the suitability of electron spectroscopies like high-resolution ARPES to provide links between electronic structure and function in complex and correlated materials such as the rare earth hexaborides.
We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observe d in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا