ترغب بنشر مسار تعليمي؟ اضغط هنا

Full-gap superconductivity in spin-polarized surface states of topological semimetal $beta$-PdBi$_2$

83   0   0.0 ( 0 )
 نشر من قبل Katsuya Iwaya
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realize long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor $beta$-PdBi$_2$ that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarizations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarized surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in $beta$-PdBi$_2$.



قيم البحث

اقرأ أيضاً

We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe$_2$ by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe$_2$ with its sister compound PtSe$_2$, we demonstrate how enhanced inter-layer hopping in the Te-based material drives a band inversion within the anti-bonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarised topological surface states which form rich multi-valley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
Quantum materials with non-trivial band topology and bulk superconductivity are considered superior materials to realize topological superconductivity. In this regard, we report detailed Density Functional Theory (DFT) calculations and Z2 invaraints for the NbC superconductor, exhibiting its band structure to be topologically non-trivial. Bulk superconductivity at 8.9K is confirmed through DC magnetization measurements under Field Cooled (FC) and Zero Field Cooled (ZFC) protocols. This superconductivity is found to be of type-II nature as revealed by isothermal M-H measurements and thus calculated the Ginzberg-Landau parameter. A large intermediate state is evident from the phase diagram, showing NbC to be a strong type-II superconductor. Comparing with earlier reports on superconducting NbC, a non-monotonic relationship of critical temperature with lattice parameters is seen. In conclusion, NbC is a type-II around 10K superconductor with topological non-trivial surface states.
We carried out a comprehensive study of the electronic, magnetic, and thermodynamic properties of Ni-doped ZrTe$_2$. High quality Ni$_{0.04}$ZrTe$_{1.89}$ single crystals show a possible coexistence of charge density waves (CDW, T$_{CDW}approx287$,K) with superconductivity (T$_capprox 4.1$,K), which we report here for the first time. The temperature dependence of the lower (H$_{c_1}$) and upper (H$_{c_2}$) critical magnetic fields both deviate significantly from the behaviors expected in conventional single-gap s-wave superconductors. However, the behaviors of the normalized superfluid density $rho_s(T)$ and H$_{c_2}(T)$ can be described well using a two-gap model for the Fermi surface, in a manner consistent with conventional multiband superconductivity. Electrical resistivity and specific heat measurements show clear anomalies centered near 287,K suggestive of CDW phase transition. Additionally, electronic-structure calculations support the coexistence of electron-phonon multiband superconductivity and CDW order due to the compensated disconnected nature of the electron- and hole-pockets at the Fermi surface. Our calculations also suggest that ZrTe$_2$ is a non-trivial topological type-II Dirac semimetal. These findings highlight that Ni-doped ZrTe2 is uniquely important for probing the coexistence of superconducting and CDW ground states in an electronic system with non-trivial topology.
Recent experiments reported gate-induced superconductivity in the monolayer 1T$$-WTe$_2$ which is a two-dimensional topological insulator in its normal state [1, 2]. The in-plane upper critical field $B_{c2}$ is found to exceed the conventional Pauli paramagnetic limit $B_p$ by 1-3 times. The enhancement cannot be explained by conventional spin-orbit coupling which vanishes due to inversion symmetry. In this work, we unveil some distinctive superconducting properties of centrosymmetric 1T$$-WTe$_2$ which arise from the coupling of spin, momentum and band parity degrees of freedom. As a result of this spin-orbit-parity coupling: (i) there is a first-order superconductor-metal transition at $B_{c2}$ much higher than the Pauli paramagnetic limit $B_p$, (ii) spin-susceptibility is anisotropic with respect to in-plane directions and results in anisotropic $B_{c2}$ and (iii) the $B_{c2}$ exhibits a strong gate dependence as the spin-orbit-parity coupling is significant only near the topological band crossing points. The importance of SOPC on the topologically nontrivial inter-orbital pairing phase is also discussed. Our theory generally applies to centrosymmetric materials with topological band
Chemical doping of topological materials may provide a possible route for realizing topological superconductivity. However, all such cases known so far are based on chalcogenides. Here we report the discovery of superconductivity induced by Re doping in the topological semimetal Mo$_{5}$Si$_{3}$ with a tetragonal structure. Partial substitution of Re for Mo in Mo$_{5-x}$Re$_{x}$Si$_{3}$ results in an anisotropic shrinkage of the unit cell up to the solubility limit of approximately $x$ = 2. Over a wide doping range (0.5 $leq$ $x$ $leq$ 2), these silicides are found to be weakly coupled superconductors with a fully isotropic gap. $T_{rm c}$ increases monotonically with $x$ from 1.67 K to 5.78 K, the latter of which is the highest among superconductors of the same structural type. This trend in $T_{rm c}$ correlates well with the variation of the number of valence electrons, and is mainly ascribed to the enhancement of electron-phonon coupling. In addition, band structure calculations reveal that superconducting Mo$_{5-x}$Re$_{x}$Si$_{3}$ exhibits nontrivial band topology characterized by $Z_{2}$ invariants (1;000) or (1;111) depending on the Re doping level. Our results suggest that transition metal silicides are a fertile ground for the exploration of candidate topological superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا