ﻻ يوجد ملخص باللغة العربية
Surface properties are examined in a chiral d-wave superconductor with hexagonal symmetry, whose one-body Hamiltonian possesses the intrinsic spin-orbit coupling identical to the one characterizing the topological nature of the Kane-Mele honeycomb insulator. In the normal state spin-orbit coupling gives rise to spontaneous surface spin currents, whereas in the superconducting state there exist besides the spin currents also charge surface currents, due to the chiral pairing symmetry. Interestingly, the combination of these two currents results in a surface spin polarization, whose spatial dependence is markedly different on the zigzag and armchair surfaces. We discuss various potential candidate materials, such as SrPtAs, which may exhibit these surface properties.
We discuss the type of pairing in the hexagonal pnictide superconductor SrPtAs, taking into account its multiband structure. The topological chiral $d$-wave state with time-reversal-symmetry breaking has been anticipated from the spontaneous magnetiz
The pairing symmetry of the hexagonal pnictide superconductor SrPtAs is discussed with taking into account its multiband structure. The topological chiral $d$-wave state with time-reversal-symmetry breaking has been anticipated from the spontaneous m
We discuss the rough surface effects on a two-dimensional chiral $k_x+ik_y$ superconductor. The atomic scale roughness at the surface is considered using the random $S$ matrix model. The roughness effects on the self-consistent order parameter, the s
We develop a self-consistent approach for calculating the local impedance at a rough surface of a chiral $p$-wave superconductor. Using the quasiclassical Eilenberger-Larkin-Ovchinnikov formalism, we numerically find the pair potential, pairing funct
Scanning tunnelling spectroscopy (STS) measurements find that the surface of Bi-2212 is characterized by nanoscale sized regions, gap patches, which have different magnitudes for the d-wave energy gap. Recent studies have shown that the tunnelling co